==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 22-JUL-99 1C0V . COMPND 2 MOLECULE: PROTEIN (F1FO ATPASE SUBUNIT C); . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR M.E.GIRVIN,V.K.RASTOGI,F.ABILDGAARD,J.L.MARKLEY, . 79 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5746.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 71 89.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 6.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 63 79.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M > 0 0 175 0, 0.0 4,-2.3 0, 0.0 5,-0.2 0.000 360.0 360.0 360.0 -75.5 -4.7 -27.8 4.3 2 2 A E H > + 0 0 170 1,-0.2 4,-0.6 2,-0.2 0, 0.0 0.759 360.0 38.3 -49.8 -26.5 -2.5 -28.3 1.2 3 3 A N H > S+ 0 0 136 2,-0.2 4,-0.9 1,-0.1 -1,-0.2 0.878 116.1 47.0 -92.3 -47.2 -5.4 -26.8 -0.7 4 4 A L H > S+ 0 0 101 1,-0.2 4,-2.4 2,-0.2 -2,-0.2 0.618 102.2 72.7 -70.4 -10.1 -6.5 -24.1 1.7 5 5 A N H X S+ 0 0 67 -4,-2.3 4,-3.2 2,-0.2 5,-0.3 0.987 97.4 42.8 -66.3 -59.5 -2.9 -23.2 2.0 6 6 A M H X S+ 0 0 64 -4,-0.6 4,-1.7 1,-0.2 5,-0.4 0.789 114.2 56.5 -56.5 -27.6 -2.6 -21.6 -1.4 7 7 A D H X S+ 0 0 100 -4,-0.9 4,-1.9 3,-0.2 -1,-0.2 0.933 112.9 37.2 -70.6 -47.1 -5.9 -20.0 -0.6 8 8 A L H X S+ 0 0 125 -4,-2.4 4,-1.1 -3,-0.2 -2,-0.2 0.951 122.4 43.0 -69.6 -51.8 -4.7 -18.4 2.6 9 9 A L H X S+ 0 0 26 -4,-3.2 4,-1.9 2,-0.2 3,-0.5 0.971 118.7 43.3 -59.2 -57.5 -1.2 -17.5 1.3 10 10 A Y H X S+ 0 0 96 -4,-1.7 4,-1.7 -5,-0.3 3,-0.4 0.962 116.4 46.8 -53.1 -56.5 -2.4 -16.2 -2.1 11 11 A M H X S+ 0 0 109 -4,-1.9 4,-2.4 -5,-0.4 -1,-0.3 0.737 107.4 63.6 -58.3 -21.2 -5.3 -14.4 -0.6 12 12 A A H X S+ 0 0 22 -4,-1.1 4,-2.4 -3,-0.5 -1,-0.2 0.955 109.0 34.8 -68.3 -52.0 -2.8 -13.1 1.9 13 13 A A H X S+ 0 0 0 -4,-1.9 4,-1.4 -3,-0.4 5,-0.3 0.643 120.6 51.7 -78.1 -14.4 -0.7 -11.2 -0.7 14 14 A A H X S+ 0 0 46 -4,-1.7 4,-1.2 -5,-0.3 5,-0.3 0.861 117.6 36.6 -87.1 -38.6 -3.8 -10.3 -2.6 15 15 A V H X S+ 0 0 56 -4,-2.4 4,-1.6 -5,-0.2 -2,-0.2 0.824 123.3 45.8 -78.6 -35.3 -5.6 -8.9 0.4 16 16 A M H X S+ 0 0 53 -4,-2.4 4,-1.6 -5,-0.3 5,-0.3 0.945 123.2 31.6 -74.0 -52.4 -2.3 -7.5 1.8 17 17 A M H X>S+ 0 0 43 -4,-1.4 4,-1.1 3,-0.2 5,-1.0 0.882 122.4 50.5 -75.7 -36.5 -1.0 -5.9 -1.4 18 18 A G H X5S+ 0 0 27 -4,-1.2 4,-1.4 -5,-0.3 5,-0.4 0.988 119.3 35.1 -62.0 -58.2 -4.5 -5.2 -2.7 19 19 A L H <5S+ 0 0 128 -4,-1.6 -1,-0.2 -5,-0.3 -2,-0.2 0.762 128.6 39.9 -67.2 -26.3 -5.6 -3.5 0.5 20 20 A A H X5S+ 0 0 10 -4,-1.6 4,-3.3 3,-0.2 5,-0.5 0.946 118.7 38.0 -87.2 -70.6 -2.2 -2.0 1.1 21 21 A A H X5S+ 0 0 21 -4,-1.1 4,-1.8 -5,-0.3 41,-0.2 0.875 132.1 34.8 -47.8 -39.7 -0.8 -0.9 -2.2 22 22 A I H X S+ 0 0 41 -5,-0.4 4,-1.9 -6,-0.2 -2,-0.2 0.950 115.2 35.4 -56.8 -46.1 -5.2 1.3 0.5 24 24 A A H X S+ 0 0 8 -4,-3.3 4,-3.3 34,-0.2 5,-0.3 0.939 117.0 54.4 -70.7 -48.6 -2.4 3.8 0.3 25 25 A A H X S+ 0 0 49 -4,-1.8 4,-1.8 -5,-0.5 -2,-0.2 0.964 112.8 41.1 -48.3 -65.7 -2.9 4.5 -3.4 26 26 A I H X S+ 0 0 99 -4,-2.9 4,-2.8 2,-0.2 3,-0.2 0.908 114.6 54.6 -50.5 -46.8 -6.6 5.4 -3.0 27 27 A G H X>S+ 0 0 25 -4,-1.9 4,-2.1 -5,-0.5 5,-0.9 0.971 103.8 51.8 -52.2 -60.8 -5.8 7.3 0.2 28 28 A I H X5S+ 0 0 30 -4,-3.3 4,-0.7 1,-0.3 5,-0.3 0.840 113.7 48.9 -43.6 -34.7 -3.2 9.4 -1.5 29 29 A G H X5S+ 0 0 48 -4,-1.8 4,-1.3 -5,-0.3 -1,-0.3 0.900 120.1 34.1 -73.7 -42.0 -6.0 10.1 -3.9 30 30 A I H X5S+ 0 0 100 -4,-2.8 4,-2.1 -3,-0.4 5,-0.3 0.983 128.7 34.4 -75.3 -63.7 -8.6 10.8 -1.2 31 31 A L H X5S+ 0 0 76 -4,-2.1 4,-2.2 1,-0.2 -3,-0.2 0.905 124.8 45.6 -57.4 -45.3 -6.4 12.5 1.4 32 32 A G H XX S+ 0 0 40 -4,-2.2 4,-2.2 -5,-0.3 3,-1.0 0.921 99.1 49.0 -55.4 -48.1 -5.2 18.1 1.0 36 36 A L H 3X S+ 0 0 109 -4,-1.8 4,-3.6 1,-0.3 5,-0.3 0.895 97.5 68.7 -60.1 -42.7 -4.6 20.5 -1.9 37 37 A E H 3< S+ 0 0 119 -4,-0.6 -1,-0.3 1,-0.2 4,-0.2 0.805 113.1 32.3 -47.5 -31.2 -8.0 22.1 -1.5 38 38 A G H XX S+ 0 0 31 -3,-1.0 4,-0.8 -4,-0.9 3,-0.8 0.815 117.6 52.7 -95.0 -37.3 -6.6 23.5 1.7 39 39 A A H 3< S+ 0 0 9 -4,-2.2 -2,-0.2 1,-0.2 -3,-0.2 0.758 93.6 74.7 -69.2 -25.7 -3.0 23.9 0.7 40 40 A A T 3< S+ 0 0 70 -4,-3.6 -1,-0.2 1,-0.2 -2,-0.1 0.850 94.0 52.8 -55.4 -35.7 -4.1 25.9 -2.4 41 41 A R T <4 S+ 0 0 192 -3,-0.8 -1,-0.2 -5,-0.3 -2,-0.2 0.933 108.0 55.5 -66.1 -48.0 -4.8 28.8 -0.1 42 42 A Q S < S- 0 0 94 -4,-0.8 0, 0.0 1,-0.2 0, 0.0 -0.471 103.9 -83.6 -85.3 159.0 -1.4 28.8 1.5 43 43 A P - 0 0 83 0, 0.0 5,-0.3 0, 0.0 3,-0.2 -0.010 38.6-110.6 -54.5 164.8 1.9 29.0 -0.4 44 44 A D S S+ 0 0 129 1,-0.2 -4,-0.1 3,-0.1 -5,-0.0 0.012 105.7 74.6 -89.1 29.2 3.4 25.9 -1.9 45 45 A L S S+ 0 0 134 3,-0.1 4,-0.3 2,-0.0 -1,-0.2 0.818 103.2 25.5-104.1 -50.5 6.3 26.0 0.6 46 46 A I S >> S+ 0 0 77 -3,-0.2 3,-1.3 2,-0.2 4,-1.1 0.948 127.4 41.4 -81.9 -56.3 4.7 24.8 3.9 47 47 A P H 3> S+ 0 0 1 0, 0.0 4,-4.1 0, 0.0 5,-0.3 0.804 104.8 68.0 -64.4 -26.6 1.8 22.6 2.7 48 48 A L H 3> S+ 0 0 77 -5,-0.3 4,-1.8 1,-0.2 5,-0.2 0.833 98.5 53.9 -59.8 -30.3 4.0 21.2 0.0 49 49 A L H <> S+ 0 0 96 -3,-1.3 4,-2.0 -4,-0.3 -1,-0.2 0.938 116.5 34.1 -69.4 -49.5 5.9 19.6 2.9 50 50 A R H X S+ 0 0 83 -4,-1.1 4,-1.9 2,-0.2 -2,-0.2 0.891 115.1 58.7 -73.0 -39.3 2.8 17.9 4.4 51 51 A T H X S+ 0 0 28 -4,-4.1 4,-2.3 1,-0.2 -2,-0.2 0.899 111.4 41.4 -55.8 -43.0 1.3 17.4 1.0 52 52 A Q H X>S+ 0 0 104 -4,-1.8 4,-3.3 -5,-0.3 5,-0.5 0.918 106.5 62.7 -71.2 -43.8 4.3 15.3 0.0 53 53 A F H X5S+ 0 0 131 -4,-2.0 4,-1.6 1,-0.2 -2,-0.2 0.843 112.5 38.3 -48.8 -37.7 4.5 13.6 3.4 54 54 A F H X5S+ 0 0 53 -4,-1.9 4,-1.9 2,-0.2 5,-0.3 0.955 113.3 51.6 -80.4 -55.4 1.1 12.1 2.6 55 55 A I H X5S+ 0 0 64 -4,-2.3 4,-2.0 1,-0.2 -2,-0.2 0.887 121.2 37.3 -48.3 -42.1 1.5 11.4 -1.1 56 56 A V H X5S+ 0 0 80 -4,-3.3 4,-2.2 2,-0.2 5,-0.4 0.904 105.2 66.6 -77.6 -42.2 4.7 9.6 -0.2 57 57 A M H <X S+ 0 0 7 -4,-1.9 4,-0.9 2,-0.2 3,-0.5 0.883 111.6 55.0 -90.7 -45.9 1.0 6.2 0.6 59 59 A L H 3X S+ 0 0 113 -4,-2.0 4,-0.6 -5,-0.3 -2,-0.2 0.664 114.4 45.9 -61.4 -15.4 3.4 5.6 -2.3 60 60 A V H 3< S+ 0 0 77 -4,-2.2 -1,-0.3 2,-0.1 -2,-0.2 0.677 97.9 68.9 -98.0 -25.7 5.7 4.0 0.3 61 61 A D H <> S+ 0 0 71 -3,-0.5 4,-1.1 -4,-0.4 -2,-0.2 0.712 101.2 49.3 -66.6 -22.6 3.0 1.9 2.1 62 62 A A H X S+ 0 0 18 -4,-0.9 4,-4.1 -41,-0.2 5,-0.5 0.947 96.5 65.2 -81.2 -55.5 2.7 -0.3 -1.0 63 63 A I H X S+ 0 0 114 -4,-0.6 4,-1.6 1,-0.2 -2,-0.2 0.757 111.8 37.9 -37.1 -38.6 6.3 -1.1 -1.6 64 64 A P H > S+ 0 0 59 0, 0.0 4,-2.8 0, 0.0 5,-0.2 0.957 119.7 42.4 -82.6 -57.9 6.4 -3.0 1.7 65 65 A M H X S+ 0 0 75 -4,-1.1 4,-1.8 1,-0.2 -2,-0.2 0.791 120.6 47.7 -58.5 -28.2 3.0 -4.7 1.8 66 66 A I H X S+ 0 0 65 -4,-4.1 4,-2.9 2,-0.2 -1,-0.2 0.922 109.7 48.4 -80.4 -46.9 3.6 -5.5 -1.8 67 67 A A H X S+ 0 0 57 -4,-1.6 4,-1.7 -5,-0.5 -2,-0.2 0.876 115.2 49.0 -59.9 -34.5 7.1 -6.8 -1.5 68 68 A V H X S+ 0 0 70 -4,-2.8 4,-2.6 2,-0.2 5,-0.3 0.921 111.3 46.6 -70.9 -44.2 5.7 -8.9 1.3 69 69 A G H X S+ 0 0 0 -4,-1.8 4,-2.2 1,-0.2 -56,-0.2 0.867 110.5 55.6 -64.9 -32.8 2.8 -10.1 -0.7 70 70 A L H X S+ 0 0 99 -4,-2.9 4,-2.3 2,-0.2 -1,-0.2 0.883 109.6 46.1 -64.5 -40.5 5.2 -10.8 -3.5 71 71 A G H X S+ 0 0 39 -4,-1.7 4,-1.9 2,-0.2 -2,-0.2 0.981 114.6 44.0 -67.1 -57.2 7.2 -13.0 -1.1 72 72 A L H X S+ 0 0 64 -4,-2.6 4,-1.8 1,-0.3 -2,-0.2 0.860 115.6 51.4 -55.3 -35.5 4.3 -15.0 0.3 73 73 A Y H X S+ 0 0 78 -4,-2.2 4,-1.8 -5,-0.3 -1,-0.3 0.907 103.1 57.0 -69.5 -39.7 3.0 -15.2 -3.2 74 74 A V H X S+ 0 0 75 -4,-2.3 4,-1.1 1,-0.2 -1,-0.2 0.877 104.9 54.1 -57.6 -35.2 6.4 -16.5 -4.4 75 75 A M H >< S+ 0 0 86 -4,-1.9 3,-1.0 1,-0.2 -1,-0.2 0.944 102.3 55.2 -63.7 -46.9 5.9 -19.3 -1.8 76 76 A F H 3< S+ 0 0 65 -4,-1.8 3,-0.3 1,-0.3 -1,-0.2 0.862 107.8 51.0 -53.0 -35.6 2.5 -20.1 -3.3 77 77 A A H 3< S+ 0 0 64 -4,-1.8 -1,-0.3 1,-0.3 -2,-0.2 0.768 132.7 10.0 -73.1 -25.9 4.4 -20.5 -6.6 78 78 A V << 0 0 96 -4,-1.1 -1,-0.3 -3,-1.0 -2,-0.1 -0.722 360.0 360.0-159.0 101.6 6.8 -22.8 -4.8 79 79 A A 0 0 115 -3,-0.3 -1,-0.1 -2,-0.2 -2,-0.1 0.964 360.0 360.0 -66.0 360.0 6.3 -24.2 -1.3