==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSFERASE 07-FEB-00 1EF4 . COMPND 2 MOLECULE: DNA-DIRECTED RNA POLYMERASE; . SOURCE 2 ORGANISM_SCIENTIFIC: METHANOTHERMOBACTER . AUTHOR C.D.MACKERETH,C.H.ARROWSMITH,A.M.EDWARDS,L.P.MCINTOSH, . 55 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4302.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 67.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 10.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 38.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 7.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 91 0, 0.0 6,-0.1 0, 0.0 7,-0.0 0.000 360.0 360.0 360.0 140.5 -6.2 4.5 1.6 2 2 A I - 0 0 60 1,-0.1 5,-0.3 4,-0.1 12,-0.0 -0.323 360.0-129.6 -59.9 137.3 -6.3 4.4 5.4 3 3 A P S S+ 0 0 92 0, 0.0 2,-2.9 0, 0.0 -1,-0.1 -0.220 80.5 20.0 -79.2 177.7 -6.4 7.8 7.0 4 4 A V S S+ 0 0 138 -2,-0.0 3,-0.1 2,-0.0 -2,-0.0 -0.339 110.1 77.7 65.2 -76.5 -4.1 9.0 9.8 5 5 A R S S- 0 0 164 -2,-2.9 2,-0.8 1,-0.1 39,-0.1 0.195 99.1 -87.5 -53.3-178.7 -1.5 6.3 9.2 6 6 A C + 0 0 43 37,-0.2 41,-0.2 1,-0.1 42,-0.2 -0.834 65.9 136.7-103.8 100.0 1.0 6.4 6.4 7 7 A L S S+ 0 0 9 -2,-0.8 6,-0.5 -5,-0.3 7,-0.1 -0.311 84.3 12.2-133.7 45.5 -0.4 4.9 3.2 8 8 A S > - 0 0 15 32,-0.2 3,-1.2 4,-0.1 32,-0.6 -0.032 67.4-156.7-179.4 -56.0 0.9 7.5 0.7 9 9 A C T 3 S- 0 0 52 1,-0.3 -3,-0.1 30,-0.1 30,-0.0 0.653 91.7 -25.2 65.5 15.3 3.4 9.9 2.2 10 10 A G T 3 S+ 0 0 59 1,-0.3 -1,-0.3 30,-0.0 29,-0.1 -0.004 131.0 72.0 139.6 -32.3 2.5 12.3 -0.5 11 11 A K S < S- 0 0 133 -3,-1.2 -1,-0.3 27,-0.1 29,-0.0 -0.945 86.3-104.5-118.7 136.4 1.1 10.2 -3.4 12 12 A P - 0 0 85 0, 0.0 -4,-0.1 0, 0.0 4,-0.1 -0.265 28.5-176.2 -57.3 137.3 -2.2 8.3 -3.4 13 13 A V > + 0 0 0 -6,-0.5 4,-2.5 2,-0.1 5,-0.1 0.557 70.0 76.7-109.8 -15.6 -1.9 4.6 -2.9 14 14 A S H > S+ 0 0 47 2,-0.2 4,-0.8 1,-0.2 3,-0.1 0.965 95.0 47.6 -59.8 -56.1 -5.6 3.7 -3.4 15 15 A A H 4 S+ 0 0 81 1,-0.3 3,-0.3 2,-0.2 -1,-0.2 0.820 119.5 42.3 -55.2 -31.2 -5.6 4.0 -7.1 16 16 A Y H >> S+ 0 0 103 1,-0.2 3,-2.2 2,-0.2 4,-1.3 0.748 91.9 82.4 -87.3 -27.1 -2.5 1.9 -7.1 17 17 A F H 3X S+ 0 0 20 -4,-2.5 4,-2.5 1,-0.3 -1,-0.2 0.789 83.8 65.9 -47.8 -28.1 -3.8 -0.5 -4.5 18 18 A N H 3X S+ 0 0 104 -4,-0.8 4,-2.9 -3,-0.3 -1,-0.3 0.891 97.8 52.2 -62.0 -39.5 -5.5 -2.2 -7.4 19 19 A E H <> S+ 0 0 66 -3,-2.2 4,-3.1 -4,-0.2 5,-0.3 0.956 109.2 48.3 -61.0 -51.7 -2.1 -3.1 -8.8 20 20 A Y H X S+ 0 0 31 -4,-1.3 4,-3.1 2,-0.2 5,-0.4 0.924 113.6 48.7 -53.6 -48.4 -1.0 -4.7 -5.5 21 21 A Q H X S+ 0 0 102 -4,-2.5 4,-2.4 2,-0.2 -2,-0.2 0.969 113.4 44.6 -56.8 -58.9 -4.3 -6.6 -5.4 22 22 A R H X S+ 0 0 150 -4,-2.9 4,-2.0 2,-0.2 5,-0.2 0.930 120.4 41.7 -52.1 -51.5 -4.1 -7.9 -9.0 23 23 A R H X>S+ 0 0 58 -4,-3.1 4,-2.7 -5,-0.2 5,-2.4 0.991 115.6 46.2 -60.8 -64.8 -0.4 -8.8 -8.6 24 24 A V H <5S+ 0 0 52 -4,-3.1 -1,-0.2 -5,-0.3 -2,-0.2 0.798 110.4 59.9 -49.0 -30.4 -0.6 -10.4 -5.1 25 25 A A H <5S+ 0 0 72 -4,-2.4 -1,-0.2 -5,-0.4 -2,-0.2 0.974 110.2 36.6 -63.5 -57.0 -3.7 -12.2 -6.4 26 26 A D H <5S- 0 0 138 -4,-2.0 -2,-0.2 -3,-0.3 -1,-0.2 0.807 128.3 -96.8 -66.2 -29.8 -1.9 -14.0 -9.3 27 27 A G T <5 + 0 0 64 -4,-2.7 -3,-0.3 -5,-0.2 2,-0.2 0.648 68.4 155.8 117.6 28.9 1.1 -14.4 -7.0 28 28 A E < - 0 0 81 -5,-2.4 -1,-0.2 -6,-0.2 5,-0.1 -0.603 57.4 -90.4 -87.1 146.7 3.3 -11.5 -8.1 29 29 A D >> - 0 0 116 -2,-0.2 4,-1.5 1,-0.2 3,-0.7 -0.371 35.2-158.6 -56.7 107.6 6.0 -10.1 -5.7 30 30 A P H 3> S+ 0 0 37 0, 0.0 4,-3.1 0, 0.0 5,-0.2 0.911 90.8 62.3 -56.3 -44.1 4.0 -7.3 -3.9 31 31 A K H 3> S+ 0 0 153 1,-0.3 4,-1.1 2,-0.2 5,-0.1 0.870 103.2 51.1 -50.1 -36.9 7.3 -5.5 -3.0 32 32 A D H <> S+ 0 0 110 -3,-0.7 4,-1.1 2,-0.2 3,-0.4 0.908 108.3 51.4 -66.2 -40.1 7.7 -5.2 -6.7 33 33 A V H >X S+ 0 0 0 -4,-1.5 4,-4.3 1,-0.2 3,-0.9 0.921 99.8 63.2 -61.1 -43.7 4.3 -3.8 -6.9 34 34 A L H 3X>S+ 0 0 3 -4,-3.1 4,-1.9 1,-0.3 5,-0.8 0.862 99.5 55.1 -49.0 -37.9 5.2 -1.3 -4.2 35 35 A D H 3<5S+ 0 0 126 -4,-1.1 -1,-0.3 -3,-0.4 -2,-0.2 0.890 115.4 37.9 -63.0 -38.2 7.7 0.1 -6.7 36 36 A D H <<5S+ 0 0 76 -4,-1.1 -2,-0.2 -3,-0.9 -1,-0.2 0.901 107.3 64.3 -78.1 -44.2 4.8 0.5 -9.1 37 37 A L H <5S- 0 0 2 -4,-4.3 -2,-0.2 -5,-0.1 -3,-0.2 0.874 99.1-139.0 -46.0 -43.6 2.3 1.7 -6.4 38 38 A G T <5 + 0 0 32 -4,-1.9 2,-0.7 -5,-0.3 -3,-0.1 0.954 38.5 162.8 80.3 56.2 4.5 4.7 -5.9 39 39 A L < - 0 0 5 -5,-0.8 6,-0.3 -29,-0.1 -1,-0.2 -0.833 31.8-139.8-111.4 94.0 4.5 5.0 -2.1 40 40 A K S S+ 0 0 150 -2,-0.7 4,-0.3 -32,-0.6 -32,-0.2 -0.120 71.6 19.6 -49.7 144.1 7.4 7.2 -1.0 41 41 A R S >> S- 0 0 180 1,-0.1 3,-1.1 2,-0.1 4,-0.8 0.633 79.1-116.6 63.6 132.7 9.1 6.1 2.2 42 42 A Y H 3> S+ 0 0 149 1,-0.2 4,-2.9 2,-0.2 5,-0.4 0.652 98.8 93.4 -73.4 -14.7 8.8 2.5 3.3 43 43 A C H 34 S+ 0 0 37 1,-0.2 4,-0.3 2,-0.2 -1,-0.2 0.802 96.4 36.8 -47.8 -29.4 7.1 3.7 6.5 44 44 A C H X> S+ 0 0 0 -3,-1.1 4,-2.7 -4,-0.3 3,-1.6 0.931 116.4 48.9 -87.1 -57.9 3.9 3.1 4.5 45 45 A R H 3X>S+ 0 0 82 -4,-0.8 4,-1.6 -6,-0.3 5,-0.8 0.925 103.2 61.5 -47.0 -56.1 4.8 -0.0 2.6 46 46 A R H 3<5S+ 0 0 131 -4,-2.9 -1,-0.3 1,-0.3 4,-0.2 0.804 115.2 36.1 -42.3 -34.2 6.1 -1.8 5.7 47 47 A M H <>>S+ 0 0 52 -3,-1.6 4,-2.6 -5,-0.4 5,-1.2 0.816 124.0 43.8 -87.3 -36.3 2.5 -1.4 6.9 48 48 A L H <5S+ 0 0 3 -4,-2.7 -2,-0.2 3,-0.3 -3,-0.2 0.994 108.1 51.1 -72.1 -69.7 0.9 -1.9 3.5 49 49 A I T <5S+ 0 0 52 -4,-1.6 -1,-0.2 1,-0.2 -3,-0.2 0.783 125.2 34.5 -41.5 -30.7 2.8 -4.9 2.0 50 50 A S T 4