==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=30-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER STRUCTURAL PROTEIN 23-NOV-05 2F4K . COMPND 2 MOLECULE: VILLIN-1; . SOURCE 2 SYNTHETIC: YES; . AUTHOR T.K.CHIU,D.R.DAVIES,J.KUBELKA,J.HOFRICHTER,W.A.EATON . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2869.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 68.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 54.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 42 A L 0 0 104 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 140.8 14.2 -1.5 57.4 2 43 A S > - 0 0 58 1,-0.1 4,-2.7 4,-0.0 5,-0.2 -0.264 360.0-104.8 -69.5 165.8 13.6 -5.2 56.6 3 44 A D H > S+ 0 0 104 1,-0.2 4,-2.2 2,-0.2 5,-0.2 0.918 124.0 48.1 -58.1 -40.8 11.4 -7.1 58.9 4 45 A E H > S+ 0 0 127 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.914 113.0 47.1 -68.1 -40.2 14.4 -8.9 60.3 5 46 A D H > S+ 0 0 87 2,-0.2 4,-2.3 1,-0.2 5,-0.2 0.880 110.3 53.4 -66.3 -37.8 16.4 -5.6 60.7 6 47 A F H X S+ 0 0 16 -4,-2.7 4,-2.8 1,-0.2 5,-0.4 0.949 109.7 48.3 -62.0 -46.7 13.3 -4.0 62.4 7 48 A K H X S+ 0 0 86 -4,-2.2 4,-1.9 -5,-0.2 -2,-0.2 0.881 111.3 50.6 -62.8 -37.6 13.2 -6.9 64.9 8 49 A A H < S+ 0 0 86 -4,-1.9 -1,-0.2 2,-0.2 -2,-0.2 0.909 115.4 41.6 -68.4 -40.2 16.9 -6.6 65.6 9 50 A V H < S+ 0 0 50 -4,-2.3 -2,-0.2 1,-0.2 -3,-0.2 0.962 130.5 23.4 -71.6 -50.2 16.7 -2.8 66.2 10 51 A F H < S- 0 0 19 -4,-2.8 -3,-0.2 2,-0.3 -2,-0.2 0.573 94.8-128.0 -99.2 -11.0 13.5 -2.7 68.3 11 52 A G S < S+ 0 0 70 -4,-1.9 2,-0.3 -5,-0.4 -4,-0.2 0.738 82.0 69.9 71.3 22.7 13.3 -6.3 69.6 12 53 A M S S- 0 0 48 -6,-0.4 -2,-0.3 -5,-0.1 -1,-0.2 -0.968 88.4 -89.5-158.9 160.6 9.8 -6.8 68.4 13 54 A T > - 0 0 57 -2,-0.3 4,-2.5 1,-0.1 5,-0.2 -0.332 38.8-109.6 -73.3 163.3 7.9 -7.1 65.1 14 55 A R H > S+ 0 0 111 1,-0.2 4,-2.0 2,-0.2 5,-0.1 0.892 122.0 51.2 -54.8 -42.6 6.5 -4.2 63.2 15 56 A S H > S+ 0 0 91 2,-0.2 4,-0.8 1,-0.2 -1,-0.2 0.908 108.1 50.8 -68.6 -38.5 3.0 -5.3 64.1 16 57 A A H >> S+ 0 0 42 1,-0.2 3,-0.9 2,-0.2 4,-0.7 0.918 109.3 51.9 -60.8 -44.5 4.0 -5.5 67.8 17 58 A F H >< S+ 0 0 18 -4,-2.5 3,-1.3 1,-0.2 -2,-0.2 0.918 104.7 56.1 -57.8 -41.3 5.4 -2.0 67.6 18 59 A A H 3< S+ 0 0 67 -4,-2.0 -1,-0.2 1,-0.3 -2,-0.2 0.706 101.3 58.5 -68.6 -17.7 2.1 -0.7 66.1 19 60 A N H << S+ 0 0 138 -3,-0.9 -1,-0.3 -4,-0.8 -2,-0.2 0.628 88.0 95.5 -82.6 -16.2 0.2 -2.1 69.1 20 61 A L S << S- 0 0 49 -3,-1.3 5,-0.0 -4,-0.7 -3,-0.0 -0.396 92.0 -93.4 -69.3 151.6 2.3 0.1 71.5 21 62 A P >> - 0 0 64 0, 0.0 4,-2.2 0, 0.0 3,-0.9 -0.322 37.9-112.4 -59.1 148.4 0.8 3.5 72.5 22 63 A L H 3> S+ 0 0 113 1,-0.3 4,-2.7 2,-0.2 5,-0.3 0.887 116.0 60.2 -52.6 -41.7 2.1 6.3 70.3 23 64 A W H 3> S+ 0 0 183 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.883 108.6 43.8 -59.8 -34.8 4.1 7.8 73.2 24 65 A X H <> S+ 0 0 45 -3,-0.9 4,-2.7 2,-0.2 -1,-0.2 0.875 110.1 54.9 -79.3 -36.9 6.1 4.6 73.4 25 66 A Q H X S+ 0 0 38 -4,-2.2 4,-2.2 1,-0.2 -2,-0.2 0.948 112.9 43.8 -53.1 -48.3 6.5 4.2 69.6 26 67 A Q H X S+ 0 0 79 -4,-2.7 4,-2.3 2,-0.2 -2,-0.2 0.888 110.5 55.1 -67.8 -38.7 8.0 7.7 69.6 27 68 A H H X S+ 0 0 97 -4,-1.8 4,-2.5 -5,-0.3 -1,-0.2 0.942 110.5 46.4 -56.2 -49.5 10.1 7.0 72.7 28 69 A L H X S+ 0 0 20 -4,-2.7 4,-2.3 2,-0.2 6,-0.2 0.901 108.6 54.0 -65.8 -40.8 11.7 4.0 70.9 29 70 A X H X>S+ 0 0 36 -4,-2.2 5,-2.2 -5,-0.2 4,-0.8 0.948 113.6 42.7 -59.3 -46.2 12.3 5.8 67.6 30 71 A K H ><5S+ 0 0 147 -4,-2.3 3,-0.8 1,-0.2 -2,-0.2 0.933 112.5 53.9 -64.6 -41.9 14.2 8.6 69.5 31 72 A E H 3<5S+ 0 0 133 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.858 113.8 40.5 -61.0 -39.1 16.0 6.1 71.6 32 73 A K H 3<5S- 0 0 99 -4,-2.3 -1,-0.3 -5,-0.2 -2,-0.2 0.512 112.6-117.0 -89.9 -5.6 17.3 4.0 68.7 33 74 A G T <<5 + 0 0 64 -4,-0.8 2,-0.2 -3,-0.8 -3,-0.2 0.811 68.8 130.4 74.6 30.1 18.1 7.1 66.6 34 75 A L < 0 0 68 -5,-2.2 -1,-0.2 -6,-0.2 -2,-0.1 -0.612 360.0 360.0-119.5 179.8 15.6 6.4 63.8 35 76 A F 0 0 255 -2,-0.2 0, 0.0 -5,-0.0 0, 0.0 0.063 360.0 360.0 6.0 360.0 12.8 7.8 61.7