==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 02-JAN-01 1HTX . COMPND 2 MOLECULE: ALPHA-AMYLASE INHIBITOR AAI; . SOURCE 2 ORGANISM_SCIENTIFIC: AMARANTHUS HYPOCHONDRIACUS; . AUTHOR J.C.MARTINS,M.ENASSAR,R.WILLEM,J.M.WIERUZESKI,G.LIPPENS, . 32 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2590.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 40.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 15.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 107 0, 0.0 16,-0.2 0, 0.0 14,-0.0 0.000 360.0 360.0 360.0-173.6 6.2 2.1 -5.1 2 2 A I - 0 0 18 14,-0.5 16,-2.2 1,-0.1 19,-0.1 -0.914 360.0-120.6-116.9 142.3 2.8 3.9 -4.8 3 3 A P > - 0 0 76 0, 0.0 3,-0.6 0, 0.0 2,-0.4 0.095 52.5 -63.0 -66.4-175.3 1.8 7.7 -4.1 4 4 A K T 3 S+ 0 0 85 1,-0.2 28,-0.1 13,-0.1 3,-0.1 -0.623 119.9 4.7 -80.7 128.5 -0.4 9.0 -1.2 5 5 A W T 3 S+ 0 0 177 26,-1.4 2,-0.3 -2,-0.4 -1,-0.2 0.959 100.4 129.6 60.4 57.9 -4.1 7.7 -1.2 6 6 A N < - 0 0 76 -3,-0.6 25,-2.6 25,-0.2 -1,-0.2 -0.997 63.2 -85.0-143.1 139.4 -3.5 5.4 -4.3 7 7 A R E -A 30 0A 161 -2,-0.3 23,-0.3 23,-0.2 2,-0.2 -0.074 43.3-178.7 -58.2 141.2 -4.3 1.7 -4.6 8 8 A b E +A 29 0A 8 21,-0.6 21,-1.6 -6,-0.0 18,-0.2 -0.813 18.3 174.4-130.1 166.2 -2.1 -1.3 -3.4 9 9 A G >>> + 0 0 7 6,-0.3 4,-2.7 -2,-0.2 3,-1.1 -0.234 4.8 174.2-169.8 77.7 -2.2 -5.1 -3.4 10 10 A P T 345S+ 0 0 45 0, 0.0 17,-0.2 0, 0.0 4,-0.1 0.765 77.4 60.8 -67.0 -34.6 1.0 -6.9 -2.1 11 11 A K T 345S+ 0 0 139 15,-2.7 16,-0.2 2,-0.1 15,-0.0 0.677 123.9 25.0 -62.2 -18.9 -0.1 -10.6 -2.1 12 12 A M T <45S+ 0 0 163 -3,-1.1 -1,-0.1 14,-0.4 15,-0.1 0.780 139.3 22.2-103.3 -63.3 -0.6 -10.1 -6.0 13 13 A D T <5S- 0 0 112 -4,-2.7 -2,-0.1 14,-0.1 14,-0.1 0.839 79.9-146.0 -74.8 -42.7 1.9 -7.2 -6.9 14 14 A G < + 0 0 50 -5,-0.5 -3,-0.1 1,-0.1 -6,-0.0 0.920 53.8 129.4 64.7 51.3 4.5 -7.2 -4.2 15 15 A V - 0 0 45 -14,-0.0 -6,-0.3 0, 0.0 -1,-0.1 -0.817 42.1-158.6-136.6 89.8 4.9 -3.4 -4.3 16 16 A P - 0 0 84 0, 0.0 -14,-0.5 0, 0.0 6,-0.1 -0.115 34.9 -82.6 -60.4 166.8 4.7 -1.5 -0.8 17 17 A c - 0 0 10 -16,-0.2 2,-0.5 1,-0.1 6,-0.1 -0.199 54.4 -80.2 -76.4 162.7 3.9 2.3 -0.7 18 18 A a > - 0 0 33 -16,-2.2 3,-2.5 -15,-0.1 -1,-0.1 -0.532 68.3 -74.5 -72.3 113.6 6.4 5.1 -1.1 19 19 A E T 3 S+ 0 0 194 -2,-0.5 -1,-0.1 1,-0.4 3,-0.1 -0.087 127.0 31.0 -44.5 128.2 8.5 6.0 2.0 20 20 A P T 3 S+ 0 0 120 0, 0.0 -1,-0.4 0, 0.0 -2,-0.1 -0.976 120.0 75.9 -75.5 8.1 7.4 7.5 4.5 21 21 A Y < - 0 0 73 -3,-2.5 2,-0.3 -19,-0.1 -17,-0.1 -0.064 58.5-160.7 -79.0 172.7 4.1 5.6 3.3 22 22 A T - 0 0 87 -4,-0.1 10,-2.0 -6,-0.1 2,-0.3 -0.920 27.0-106.0-158.7 138.0 2.9 2.1 3.6 23 23 A b B -B 31 0B 22 -2,-0.3 2,-0.5 8,-0.2 8,-0.3 -0.398 17.0-162.3 -60.2 114.1 0.2 -0.1 1.9 24 24 A T + 0 0 106 6,-2.6 2,-0.2 -2,-0.3 6,-0.2 -0.316 65.1 93.7 -91.3 50.6 -2.9 -0.7 4.1 25 25 A S - 0 0 15 -2,-0.5 -16,-0.2 4,-0.2 4,-0.1 -0.725 48.8-176.8-133.1 174.1 -3.8 -3.6 1.7 26 26 A D S S- 0 0 99 -18,-0.2 -15,-2.7 -2,-0.2 -14,-0.4 0.313 98.6 -20.3-136.7 -57.9 -3.4 -7.5 1.2 27 27 A Y S S+ 0 0 144 1,-0.2 2,-0.3 -17,-0.2 -14,-0.1 0.632 143.3 18.2-119.4 -40.7 -5.1 -7.7 -2.3 28 28 A Y S S+ 0 0 200 -4,-0.1 -1,-0.2 2,-0.0 2,-0.2 -0.909 90.2 97.6-145.4 103.4 -7.3 -4.6 -2.7 29 29 A G E -A 8 0A 12 -21,-1.6 -21,-0.6 -2,-0.3 2,-0.3 -0.617 57.6-103.7-156.7-146.0 -6.5 -1.6 -0.4 30 30 A N E -A 7 0A 56 -23,-0.3 -6,-2.6 -2,-0.2 -23,-0.2 -0.990 27.1 -92.2-159.4 157.2 -4.6 1.7 -0.6 31 31 A c B B 23 0B 0 -25,-2.6 -26,-1.4 -2,-0.3 -8,-0.2 -0.502 360.0 360.0 -71.7 134.3 -1.3 3.6 0.5 32 32 A S 0 0 66 -10,-2.0 -9,-0.2 -2,-0.2 -1,-0.1 0.003 360.0 360.0-153.7 360.0 -1.4 5.7 3.7