==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 28-SEP-07 2JVX . COMPND 2 MOLECULE: NF-KAPPA-B ESSENTIAL MODULATOR; . SOURCE 2 SYNTHETIC: YES; . AUTHOR F.CORDIER,E.VINOLO,M.VERON,M.DELEPIERRE,F.AGOU . 28 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2613.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 8 28.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 137 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 113.6 -13.7 -4.4 1.9 2 2 A S - 0 0 88 1,-0.2 2,-0.9 14,-0.0 0, 0.0 0.992 360.0-176.9 57.1 64.4 -11.9 -1.6 -0.1 3 3 A D - 0 0 105 9,-0.0 2,-0.9 2,-0.0 -1,-0.2 -0.802 13.6-172.0-102.1 97.6 -8.6 -3.5 -0.0 4 4 A F E -A 13 0A 71 9,-3.0 9,-3.8 -2,-0.9 2,-0.3 -0.799 18.7-156.3 -89.7 107.5 -5.8 -1.5 -1.7 5 5 A C E -A 12 0A 91 -2,-0.9 7,-0.3 7,-0.3 5,-0.1 -0.662 14.4-126.1 -98.3 138.2 -2.9 -3.9 -1.7 6 6 A C > - 0 0 7 5,-3.0 3,-1.1 -2,-0.3 2,-0.8 -0.697 12.5-147.1 -78.2 119.1 0.8 -3.0 -1.9 7 7 A P T 3 S+ 0 0 120 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.010 95.0 55.5 -77.1 35.2 2.4 -4.9 -4.9 8 8 A K T 3 S- 0 0 113 -2,-0.8 2,-0.3 1,-0.6 -3,-0.0 0.494 118.5 -2.2-137.3 -24.7 5.6 -5.1 -2.8 9 9 A C S < S- 0 0 50 -3,-1.1 2,-1.7 2,-0.2 -1,-0.6 -0.949 90.3 -71.8-160.7 172.4 4.5 -6.8 0.4 10 10 A Q S S+ 0 0 188 -2,-0.3 2,-0.4 -3,-0.1 -5,-0.0 -0.572 78.6 129.4 -79.1 86.3 1.4 -8.2 2.1 11 11 A Y - 0 0 88 -2,-1.7 -5,-3.0 -5,-0.4 2,-0.6 -0.930 35.5-171.7-144.6 115.7 -0.2 -4.9 3.0 12 12 A Q E -A 5 0A 118 -2,-0.4 -7,-0.3 -7,-0.3 -2,-0.0 -0.943 13.4-158.5-110.3 114.8 -3.8 -4.0 2.2 13 13 A A E -A 4 0A 1 -9,-3.8 -9,-3.0 -2,-0.6 6,-0.1 -0.709 15.8-147.0 -93.2 142.2 -4.7 -0.4 2.9 14 14 A P S S+ 0 0 84 0, 0.0 2,-0.4 0, 0.0 -1,-0.1 0.795 87.0 52.6 -75.2 -31.1 -8.3 0.8 3.5 15 15 A D S > S- 0 0 87 1,-0.1 4,-1.8 -11,-0.1 5,-0.1 -0.857 72.6-143.3-107.0 144.1 -7.6 4.1 1.9 16 16 A M H > S+ 0 0 123 -2,-0.4 4,-2.1 2,-0.2 -1,-0.1 0.796 108.3 57.6 -70.9 -28.5 -6.1 4.7 -1.6 17 17 A D H > S+ 0 0 119 2,-0.2 4,-2.3 1,-0.2 -1,-0.2 0.948 104.8 49.7 -61.3 -50.5 -4.4 7.6 0.0 18 18 A T H > S+ 0 0 41 1,-0.2 4,-3.0 2,-0.2 -2,-0.2 0.893 108.4 53.7 -56.2 -43.5 -2.8 5.3 2.6 19 19 A L H X S+ 0 0 30 -4,-1.8 4,-3.2 2,-0.2 5,-0.2 0.942 107.4 50.3 -57.8 -49.4 -1.6 3.0 -0.2 20 20 A Q H X S+ 0 0 117 -4,-2.1 4,-1.9 1,-0.2 -2,-0.2 0.925 112.9 46.5 -54.9 -49.0 0.1 5.8 -2.0 21 21 A I H X S+ 0 0 108 -4,-2.3 4,-1.0 1,-0.2 -1,-0.2 0.941 114.2 47.8 -58.8 -49.1 1.9 6.9 1.2 22 22 A H H >X S+ 0 0 43 -4,-3.0 4,-3.0 1,-0.2 3,-0.6 0.898 108.6 53.6 -60.8 -44.1 2.9 3.3 1.9 23 23 A V H 3< S+ 0 0 60 -4,-3.2 -1,-0.2 1,-0.3 -2,-0.2 0.878 108.7 49.1 -62.3 -36.6 4.1 2.6 -1.6 24 24 A M H 3< S+ 0 0 125 -4,-1.9 -1,-0.3 -5,-0.2 -2,-0.2 0.652 116.5 43.5 -78.7 -16.2 6.4 5.6 -1.4 25 25 A E H << S+ 0 0 148 -4,-1.0 2,-2.0 -3,-0.6 3,-0.5 0.759 102.1 71.1 -87.5 -33.3 7.7 4.4 1.9 26 26 A C < + 0 0 28 -4,-3.0 -1,-0.2 1,-0.2 -4,-0.1 -0.416 57.1 129.7 -85.1 61.2 7.9 0.9 0.7 27 27 A I 0 0 122 -2,-2.0 -1,-0.2 -3,-0.2 -2,-0.1 0.749 360.0 360.0 -85.7 -26.9 10.9 1.5 -1.6 28 28 A E 0 0 201 -3,-0.5 -3,-0.0 0, 0.0 0, 0.0 -0.564 360.0 360.0 -72.1 360.0 12.9 -1.5 -0.2