==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-MAY-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 20-MAR-09 2KGU . COMPND 2 MOLECULE: PUROTOXIN-1; . SOURCE 2 ORGANISM_SCIENTIFIC: GEOLYCOSA; . AUTHOR K.NADEZHDIN,A.VASSILEVSKI,A.ARSENIEV,E.GRISHIN,K.PLUZHNIKOV, . 35 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3189.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 48.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 11.4 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 124 0, 0.0 2,-1.1 0, 0.0 15,-0.0 0.000 360.0 360.0 360.0 104.8 2.1 0.0 -1.2 2 2 A Y + 0 0 204 14,-0.0 2,-0.3 2,-0.0 0, 0.0 -0.649 360.0 148.8 -80.3 99.3 0.8 2.4 -3.9 3 3 A a - 0 0 43 -2,-1.1 2,-0.6 10,-0.1 12,-0.2 -0.859 56.4 -82.6-129.2 163.9 1.1 0.4 -7.2 4 4 A A B -a 15 0A 1 10,-2.6 12,-2.5 -2,-0.3 3,-0.2 -0.541 49.8-151.5 -69.7 112.9 -0.8 0.3 -10.5 5 5 A E > - 0 0 134 -2,-0.6 3,-0.8 1,-0.2 2,-0.6 0.121 50.3 -38.9 -70.0-169.1 -3.9 -1.9 -9.9 6 6 A K T 3 S- 0 0 165 1,-0.3 -1,-0.2 9,-0.1 27,-0.1 -0.393 134.6 -2.6 -58.9 105.6 -5.6 -4.0 -12.6 7 7 A G T 3 S+ 0 0 30 -2,-0.6 2,-0.3 1,-0.2 -1,-0.3 0.984 97.6 144.5 74.6 62.1 -5.5 -1.8 -15.6 8 8 A I < - 0 0 37 -3,-0.8 24,-0.4 -4,-0.1 -1,-0.2 -0.966 61.7 -81.6-133.6 149.3 -3.8 1.3 -14.3 9 9 A R + 0 0 171 -2,-0.3 4,-0.3 1,-0.2 22,-0.2 -0.254 48.1 168.6 -49.9 111.8 -1.3 3.9 -15.7 10 10 A b + 0 0 7 20,-0.8 -1,-0.2 -2,-0.1 21,-0.1 0.136 38.7 115.6-113.8 16.8 2.0 2.2 -15.2 11 11 A D S S+ 0 0 141 19,-0.3 -1,-0.1 1,-0.2 -2,-0.1 0.904 102.6 4.2 -51.8 -45.9 4.0 4.6 -17.3 12 12 A D S S+ 0 0 157 -3,-0.2 2,-0.2 2,-0.1 -1,-0.2 0.692 130.4 62.7-110.3 -32.8 6.0 5.7 -14.3 13 13 A I S S- 0 0 59 -4,-0.3 2,-0.2 1,-0.1 -10,-0.1 -0.642 80.9-120.0 -96.5 154.4 4.6 3.3 -11.7 14 14 A H - 0 0 154 -2,-0.2 -10,-2.6 1,-0.1 2,-0.2 -0.501 31.4 -99.4 -90.0 160.8 4.9 -0.5 -11.7 15 15 A c B -a 4 0A 22 -12,-0.2 -10,-0.2 -2,-0.2 3,-0.2 -0.516 43.3 -99.6 -80.2 146.7 2.1 -2.9 -11.7 16 16 A a > - 0 0 26 -12,-2.5 3,-3.0 -2,-0.2 2,-0.4 -0.191 58.3 -70.9 -61.8 155.5 0.9 -4.6 -8.5 17 17 A T T 3 S+ 0 0 157 1,-0.3 -1,-0.2 3,-0.0 3,-0.1 -0.284 129.0 30.2 -51.7 103.0 2.1 -8.2 -7.7 18 18 A G T 3 S+ 0 0 59 1,-0.5 2,-0.3 -2,-0.4 -1,-0.3 0.166 104.7 84.5 130.7 -16.7 0.1 -10.1 -10.3 19 19 A L < - 0 0 34 -3,-3.0 -1,-0.5 15,-0.2 2,-0.4 -0.819 59.8-146.8-116.5 156.7 -0.2 -7.6 -13.1 20 20 A K E -B 33 0B 139 13,-2.8 13,-1.8 -2,-0.3 2,-1.4 -0.957 25.8-111.9-125.3 142.4 2.1 -6.7 -16.0 21 21 A b E -B 32 0B 54 -2,-0.4 2,-0.8 11,-0.2 11,-0.2 -0.560 37.3-169.8 -73.6 94.2 2.6 -3.3 -17.7 22 22 A K E +B 31 0B 82 9,-2.3 9,-2.5 -2,-1.4 2,-0.4 -0.781 16.5 160.3 -91.7 108.4 1.1 -4.0 -21.1 23 23 A d - 0 0 54 -2,-0.8 6,-0.2 7,-0.3 7,-0.2 -0.973 35.7-117.8-130.8 144.2 1.9 -1.1 -23.5 24 24 A N - 0 0 78 4,-2.6 3,-0.2 -2,-0.4 -1,-0.0 -0.107 27.4-113.1 -69.9 173.1 1.9 -0.9 -27.3 25 25 A A S S+ 0 0 111 1,-0.2 -1,-0.1 2,-0.1 -2,-0.0 0.737 113.4 64.3 -80.0 -24.3 5.0 -0.1 -29.4 26 26 A S S S- 0 0 101 2,-0.1 -1,-0.2 1,-0.0 3,-0.1 0.763 121.8-102.8 -69.9 -25.2 3.6 3.2 -30.5 27 27 A G S S+ 0 0 44 1,-0.4 2,-0.2 -3,-0.2 3,-0.2 0.650 87.3 92.8 109.2 23.4 3.7 4.4 -26.9 28 28 A Y + 0 0 163 1,-0.1 -4,-2.6 3,-0.0 -1,-0.4 -0.705 55.0 51.0-133.2-175.5 0.1 4.1 -25.9 29 29 A N + 0 0 109 -2,-0.2 2,-1.6 1,-0.2 -1,-0.1 0.799 66.1 165.2 52.2 29.8 -2.4 1.7 -24.4 30 30 A d + 0 0 27 -7,-0.2 -20,-0.8 -3,-0.2 -19,-0.3 -0.593 17.5 137.1 -80.5 86.2 0.1 1.4 -21.6 31 31 A V E -B 22 0B 45 -9,-2.5 -9,-2.3 -2,-1.6 2,-0.2 -0.898 55.7 -99.7-130.7 160.1 -2.1 -0.3 -18.9 32 32 A c E -B 21 0B 2 -24,-0.4 2,-0.3 -2,-0.3 -11,-0.2 -0.500 39.3-176.3 -79.1 147.0 -1.7 -3.2 -16.4 33 33 A R E -B 20 0B 99 -13,-1.8 -13,-2.8 -2,-0.2 2,-2.1 -0.992 38.2-114.6-144.7 149.9 -3.1 -6.6 -17.2 34 34 A K 0 0 165 -2,-0.3 -15,-0.2 -15,-0.2 -2,-0.0 -0.327 360.0 360.0 -80.1 56.8 -3.3 -10.0 -15.4 35 35 A K 0 0 191 -2,-2.1 -3,-0.0 -15,-0.1 -13,-0.0 0.359 360.0 360.0 -74.9 360.0 -1.0 -11.6 -17.9