==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 08-JAN-02 1KQV . COMPND 2 MOLECULE: VITAMIN D-DEPENDENT CALCIUM-BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BOS TAURUS; . AUTHOR I.BERTINI,A.DONAIRE,B.JIMENEZ,C.LUCHINAT,G.PARIGI, . 75 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5157.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 12 16.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 34 45.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 226 0, 0.0 5,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -47.6 2.1 0.0 -1.2 2 2 A S > - 0 0 82 1,-0.1 4,-0.8 3,-0.0 0, 0.0 0.045 360.0-105.9 -60.0 176.3 4.8 -2.2 0.1 3 3 A P H > S+ 0 0 85 0, 0.0 4,-2.3 0, 0.0 5,-0.2 0.841 116.2 63.9 -75.0 -35.8 4.6 -6.0 -0.0 4 4 A E H > S+ 0 0 153 1,-0.3 4,-1.8 2,-0.2 5,-0.1 0.911 106.1 43.9 -52.9 -47.6 4.0 -6.3 3.7 5 5 A E H > S+ 0 0 115 1,-0.2 4,-3.2 2,-0.2 -1,-0.3 0.798 108.4 60.0 -68.0 -29.7 0.8 -4.4 3.3 6 6 A L H X S+ 0 0 29 -4,-0.8 4,-3.1 2,-0.2 -2,-0.2 0.894 104.2 49.6 -64.4 -41.3 0.0 -6.5 0.2 7 7 A K H X S+ 0 0 99 -4,-2.3 4,-2.7 2,-0.2 5,-0.2 0.951 114.7 43.6 -61.8 -51.8 0.2 -9.6 2.4 8 8 A G H X S+ 0 0 33 -4,-1.8 4,-2.8 2,-0.2 -2,-0.2 0.959 117.1 44.9 -57.8 -56.3 -2.2 -8.2 5.0 9 9 A I H X S+ 0 0 57 -4,-3.2 4,-1.4 1,-0.2 5,-0.2 0.919 112.0 54.8 -54.1 -47.4 -4.6 -6.7 2.4 10 10 A F H >X S+ 0 0 10 -4,-3.1 4,-3.5 -5,-0.3 3,-1.0 0.935 111.5 42.3 -51.1 -54.7 -4.4 -10.0 0.5 11 11 A E H 3X S+ 0 0 86 -4,-2.7 4,-2.8 1,-0.3 -1,-0.2 0.855 107.1 62.5 -61.5 -36.6 -5.4 -12.0 3.6 12 12 A K H 3< S+ 0 0 169 -4,-2.8 -1,-0.3 -5,-0.2 -2,-0.2 0.789 116.0 32.7 -58.9 -28.0 -8.0 -9.4 4.4 13 13 A Y H - 0 0 81 1,-0.2 3,-1.6 2,-0.1 -2,-0.1 -0.304 56.8-137.1 -58.2 136.7 -10.1 -19.9 3.5 20 20 A P T 3 S+ 0 0 31 0, 0.0 -5,-0.2 0, 0.0 -6,-0.2 0.445 100.7 73.8 -75.0 0.3 -7.7 -16.9 3.3 21 21 A N T 3 S+ 0 0 112 1,-0.2 2,-0.4 -7,-0.2 41,-0.1 0.469 101.2 44.2 -89.6 -4.6 -5.0 -19.5 2.5 22 22 A Q S < S- 0 0 84 -3,-1.6 -1,-0.2 -8,-0.2 2,-0.1 -0.965 76.9-144.2-145.6 124.2 -6.5 -19.8 -1.0 23 23 A L - 0 0 0 -2,-0.4 38,-0.8 -3,-0.1 2,-0.3 -0.399 17.0-157.7 -82.5 162.3 -7.7 -17.0 -3.3 24 24 A S > - 0 0 44 36,-0.2 4,-4.3 37,-0.1 5,-0.3 -0.894 30.8-107.0-137.4 165.8 -10.7 -17.3 -5.6 25 25 A K H > S+ 0 0 57 -2,-0.3 4,-3.3 2,-0.2 -1,-0.1 0.967 123.4 39.4 -55.7 -58.3 -12.1 -15.7 -8.7 26 26 A E H > S+ 0 0 80 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.895 118.3 50.5 -58.6 -42.7 -14.7 -13.8 -6.9 27 27 A E H > S+ 0 0 3 2,-0.2 4,-1.9 1,-0.2 -2,-0.2 0.959 113.9 42.3 -59.9 -54.8 -12.3 -13.1 -4.0 28 28 A L H X S+ 0 0 3 -4,-4.3 4,-4.0 1,-0.2 5,-0.5 0.896 106.2 65.8 -58.9 -42.1 -9.6 -11.8 -6.3 29 29 A K H X S+ 0 0 73 -4,-3.3 4,-1.3 -5,-0.3 -1,-0.2 0.919 103.9 44.8 -44.0 -56.2 -12.3 -9.9 -8.3 30 30 A L H >X S+ 0 0 51 -4,-1.9 4,-2.0 2,-0.2 3,-0.7 0.959 117.1 44.9 -53.5 -57.7 -12.9 -7.7 -5.2 31 31 A L H 3X>S+ 0 0 0 -4,-1.9 4,-2.9 1,-0.3 5,-0.7 0.964 112.3 49.4 -50.0 -64.0 -9.2 -7.3 -4.6 32 32 A L H 3<5S+ 0 0 3 -4,-4.0 8,-0.3 1,-0.2 -1,-0.3 0.739 109.1 60.6 -48.5 -22.9 -8.4 -6.6 -8.2 33 33 A Q H <<5S+ 0 0 104 -4,-1.3 -1,-0.2 -3,-0.7 -2,-0.2 0.981 125.7 9.9 -69.3 -60.1 -11.3 -4.2 -7.9 34 34 A T H <5S+ 0 0 101 -4,-2.0 -2,-0.2 -3,-0.2 -3,-0.2 0.908 130.4 54.8 -85.6 -50.2 -9.8 -2.0 -5.2 35 35 A E T <5S- 0 0 26 -4,-2.9 -3,-0.2 -5,-0.3 -2,-0.1 0.941 137.7 -12.9 -47.0 -60.5 -6.2 -3.3 -5.2 36 36 A F < + 0 0 67 -5,-0.7 3,-0.4 1,-0.1 4,-0.3 -0.679 62.8 166.4-151.6 90.2 -5.8 -2.7 -8.9 37 37 A P S >> S+ 0 0 73 0, 0.0 3,-0.7 0, 0.0 4,-0.7 0.715 79.4 67.4 -75.0 -22.3 -9.0 -1.9 -10.9 38 38 A S H >> S+ 0 0 95 1,-0.3 4,-1.1 2,-0.2 3,-0.7 0.820 93.1 58.6 -65.9 -32.0 -6.7 -0.8 -13.8 39 39 A L H 34 S+ 0 0 29 -3,-0.4 5,-0.3 -7,-0.3 -1,-0.3 0.723 98.4 60.8 -68.9 -21.7 -5.6 -4.3 -14.2 40 40 A L H <4 S+ 0 0 56 -3,-0.7 -1,-0.3 -8,-0.3 -2,-0.2 0.771 98.6 56.4 -74.7 -27.4 -9.3 -5.2 -14.8 41 41 A K H << S+ 0 0 184 -4,-0.7 -2,-0.2 -3,-0.7 -1,-0.2 0.842 87.6 103.7 -71.5 -34.7 -9.3 -2.9 -17.8 42 42 A G S < S- 0 0 36 -4,-1.1 -3,-0.0 1,-0.2 0, 0.0 0.154 95.1-101.1 -41.2 165.5 -6.4 -4.8 -19.3 43 43 A M S S+ 0 0 185 1,-0.1 2,-1.1 2,-0.1 -1,-0.2 0.511 102.4 96.4 -71.5 -4.2 -7.2 -7.2 -22.1 44 44 A S - 0 0 31 -5,-0.3 -2,-0.1 4,-0.1 -1,-0.1 -0.771 69.0-155.0 -92.5 98.2 -7.0 -10.0 -19.5 45 45 A T > - 0 0 82 -2,-1.1 4,-3.5 3,-0.1 5,-0.2 -0.070 32.4 -95.0 -64.3 170.5 -10.6 -10.6 -18.4 46 46 A L H > S+ 0 0 38 2,-0.2 4,-4.3 1,-0.2 5,-0.2 0.964 127.7 47.2 -50.6 -62.8 -11.5 -12.0 -15.0 47 47 A D H > S+ 0 0 99 1,-0.3 4,-3.9 2,-0.2 5,-0.4 0.908 113.9 49.1 -44.7 -52.0 -11.6 -15.6 -16.3 48 48 A E H > S+ 0 0 94 1,-0.2 4,-3.6 2,-0.2 -1,-0.3 0.915 114.7 44.2 -54.9 -47.4 -8.4 -15.0 -18.1 49 49 A L H X S+ 0 0 2 -4,-3.5 4,-3.8 2,-0.2 5,-0.4 0.909 115.1 49.7 -64.1 -43.7 -6.9 -13.6 -14.9 50 50 A F H X S+ 0 0 55 -4,-4.3 4,-2.4 -5,-0.2 -2,-0.2 0.951 120.3 34.4 -59.6 -53.3 -8.4 -16.4 -12.9 51 51 A E H < S+ 0 0 149 -4,-3.9 -2,-0.2 -5,-0.2 -1,-0.2 0.876 121.1 50.7 -69.6 -39.5 -7.1 -19.1 -15.2 52 52 A E H < S+ 0 0 89 -4,-3.6 -2,-0.2 -5,-0.4 -3,-0.2 0.966 114.4 41.6 -62.0 -56.1 -3.9 -17.2 -15.9 53 53 A L H < S+ 0 0 1 -4,-3.8 2,-1.0 -5,-0.2 -2,-0.2 0.942 105.4 71.4 -56.5 -51.5 -3.1 -16.6 -12.3 54 54 A D < + 0 0 25 -4,-2.4 -1,-0.1 -5,-0.4 7,-0.1 -0.581 51.8 143.0 -72.1 102.4 -4.1 -20.1 -11.4 55 55 A K + 0 0 146 -2,-1.0 -1,-0.2 1,-0.1 -2,-0.1 0.331 57.3 76.1-119.9 -1.0 -1.3 -22.1 -12.9 56 56 A N S S- 0 0 58 4,-0.2 -2,-0.1 -3,-0.1 -1,-0.1 0.224 99.0-128.9 -94.0 12.0 -1.1 -24.7 -10.1 57 57 A G S S+ 0 0 78 -6,-0.2 -2,-0.1 1,-0.1 -6,-0.0 0.892 81.2 100.8 37.1 64.0 -4.3 -26.3 -11.5 58 58 A D S S- 0 0 70 2,-0.1 -1,-0.1 0, 0.0 3,-0.1 0.515 88.4-111.9-134.5 -57.1 -6.0 -26.3 -8.2 59 59 A G S S+ 0 0 32 1,-0.4 2,-0.5 -9,-0.1 -34,-0.2 0.263 81.5 104.0 131.1 -4.6 -8.4 -23.3 -8.0 60 60 A E - 0 0 57 -36,-0.1 2,-0.4 -39,-0.1 -1,-0.4 -0.919 53.6-158.2-111.6 132.4 -6.6 -21.2 -5.4 61 61 A V - 0 0 0 -38,-0.8 5,-0.2 -2,-0.5 -37,-0.1 -0.392 28.6-177.1-102.2 52.5 -4.7 -18.1 -6.3 62 62 A S >> - 0 0 17 -2,-0.4 4,-1.7 -39,-0.2 3,-1.0 0.118 48.8 -88.4 -43.3 165.6 -2.6 -18.2 -3.1 63 63 A F H 3> S+ 0 0 57 1,-0.3 4,-1.8 2,-0.2 5,-0.2 0.806 127.1 69.2 -49.2 -33.0 -0.1 -15.3 -2.6 64 64 A E H >4 S+ 0 0 86 1,-0.3 3,-0.6 2,-0.2 -1,-0.3 0.938 104.0 38.9 -51.2 -54.6 2.3 -17.4 -4.5 65 65 A E H X> S+ 0 0 0 -3,-1.0 3,-1.9 1,-0.2 4,-0.7 0.792 107.2 67.7 -66.8 -28.9 0.4 -17.0 -7.8 66 66 A F H >X S+ 0 0 0 -4,-1.7 4,-1.9 1,-0.3 3,-1.1 0.856 87.7 65.0 -58.6 -37.5 -0.2 -13.4 -6.7 67 67 A Q H << S+ 0 0 113 -4,-1.8 -1,-0.3 -3,-0.6 4,-0.2 0.653 94.8 62.9 -60.3 -14.6 3.4 -12.7 -7.2 68 68 A V H X> S+ 0 0 52 -3,-1.9 3,-0.7 -4,-0.2 4,-0.5 0.861 104.5 43.1 -77.6 -38.6 2.7 -13.4 -10.8 69 69 A L H XX S+ 0 0 0 -3,-1.1 4,-2.7 -4,-0.7 3,-0.8 0.802 96.8 76.0 -75.4 -30.9 0.4 -10.5 -11.1 70 70 A V H 3< S+ 0 0 50 -4,-1.9 4,-0.3 1,-0.3 -1,-0.2 0.739 90.0 61.7 -51.3 -22.6 2.8 -8.3 -9.2 71 71 A K H X> S+ 0 0 137 -3,-0.7 4,-1.8 -4,-0.2 3,-0.7 0.938 107.3 39.1 -69.5 -49.0 4.6 -8.3 -12.5 72 72 A K H << S+ 0 0 74 -3,-0.8 -2,-0.2 -4,-0.5 -1,-0.2 0.813 113.6 56.4 -69.6 -31.1 1.8 -6.6 -14.3 73 73 A I T 3< S+ 0 0 41 -4,-2.7 -1,-0.3 1,-0.2 -2,-0.2 0.598 107.3 51.8 -74.9 -11.4 1.2 -4.5 -11.3 74 74 A S T <4 0 0 95 -3,-0.7 -2,-0.2 -5,-0.3 -1,-0.2 0.851 360.0 360.0 -90.1 -42.8 4.9 -3.5 -11.6 75 75 A Q < 0 0 199 -4,-1.8 0, 0.0 -5,-0.0 0, 0.0 -0.347 360.0 360.0 -70.1 360.0 4.8 -2.5 -15.3