==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=14-AUG-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION REGULATOR 20-JAN-11 2L8N . COMPND 2 MOLECULE: TRANSCRIPTIONAL REPRESSOR CYTR; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR C.L.MOODY,V.TRETYACHENKO-LADOKHINA,D.F.SENEAR,M.J.COCCO . 47 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4195.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 61.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 8.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 22 46.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 9 A A 0 0 154 0, 0.0 42,-0.1 0, 0.0 2,-0.0 0.000 360.0 360.0 360.0 48.2 6.5 -12.4 -13.9 2 10 A A - 0 0 43 41,-0.1 2,-0.3 3,-0.0 3,-0.0 -0.210 360.0-140.2 -83.7 178.8 3.3 -11.6 -12.1 3 11 A T >> - 0 0 45 1,-0.1 4,-1.8 43,-0.0 3,-0.6 -0.992 24.5-117.1-143.6 148.7 0.5 -14.0 -11.0 4 12 A M H 3> S+ 0 0 78 41,-0.7 4,-1.1 -2,-0.3 42,-0.1 0.787 118.3 56.2 -53.6 -27.3 -3.3 -14.0 -11.0 5 13 A K H 3> S+ 0 0 138 2,-0.2 4,-1.1 1,-0.2 -1,-0.3 0.899 102.7 51.9 -72.5 -41.9 -2.9 -14.3 -7.2 6 14 A D H <> S+ 0 0 90 -3,-0.6 4,-1.7 1,-0.2 -2,-0.2 0.854 105.5 57.0 -63.1 -34.7 -0.7 -11.2 -6.9 7 15 A V H X S+ 0 0 16 -4,-1.8 4,-2.7 1,-0.2 -1,-0.2 0.875 96.4 63.5 -64.6 -37.4 -3.3 -9.2 -8.8 8 16 A A H <>S+ 0 0 11 -4,-1.1 5,-2.2 1,-0.2 -1,-0.2 0.920 106.6 43.8 -52.6 -46.2 -6.0 -10.1 -6.3 9 17 A L H ><5S+ 0 0 146 -4,-1.1 3,-0.9 1,-0.2 -1,-0.2 0.887 112.0 53.0 -67.0 -39.3 -4.1 -8.2 -3.6 10 18 A K H 3<5S+ 0 0 140 -4,-1.7 -2,-0.2 1,-0.3 -1,-0.2 0.834 119.7 34.6 -65.0 -32.5 -3.4 -5.3 -6.0 11 19 A A T 3<5S- 0 0 13 -4,-2.7 -1,-0.3 -5,-0.1 -2,-0.2 0.205 102.9-132.9-105.4 12.7 -7.2 -5.1 -6.7 12 20 A K T < 5 + 0 0 184 -3,-0.9 -3,-0.2 -5,-0.2 -4,-0.1 0.837 54.0 150.3 35.5 47.9 -8.1 -6.1 -3.2 13 21 A V < - 0 0 25 -5,-2.2 2,-0.2 -6,-0.2 -4,-0.1 0.989 54.2 -82.2 -69.0 -80.0 -10.6 -8.6 -4.7 14 22 A S > - 0 0 67 1,-0.1 4,-1.9 2,-0.1 5,-0.4 -0.608 15.3-121.6 167.1 129.9 -10.9 -11.4 -2.2 15 23 A T H > S+ 0 0 129 1,-0.2 4,-0.8 -2,-0.2 -1,-0.1 0.801 118.6 47.7 -51.6 -29.7 -8.9 -14.6 -1.3 16 24 A A H > S+ 0 0 51 2,-0.2 4,-3.0 3,-0.2 -1,-0.2 0.881 108.3 52.9 -79.6 -41.2 -12.2 -16.5 -2.0 17 25 A T H > S+ 0 0 26 2,-0.2 4,-2.7 1,-0.2 3,-0.4 0.990 112.1 42.3 -57.7 -64.9 -12.9 -14.7 -5.3 18 26 A V H < S+ 0 0 36 -4,-1.9 -1,-0.2 1,-0.3 -2,-0.2 0.837 119.4 47.7 -50.9 -34.7 -9.5 -15.4 -7.0 19 27 A S H >< S+ 0 0 51 -4,-0.8 3,-0.7 -5,-0.4 -1,-0.3 0.830 114.5 44.6 -76.6 -32.5 -9.8 -18.9 -5.5 20 28 A R H >X S+ 0 0 109 -4,-3.0 4,-3.0 -3,-0.4 3,-1.9 0.681 87.6 90.8 -82.4 -19.5 -13.3 -19.4 -6.7 21 29 A A T 3< S+ 0 0 53 -4,-2.7 -1,-0.2 1,-0.3 -2,-0.1 0.707 94.9 41.7 -48.8 -20.0 -12.3 -17.9 -10.1 22 30 A L T <4 S+ 0 0 131 -3,-0.7 -1,-0.3 -5,-0.2 -2,-0.2 0.587 124.5 35.8-102.6 -16.0 -11.6 -21.6 -11.0 23 31 A M T <4 S- 0 0 109 -3,-1.9 -2,-0.2 -4,-0.2 -3,-0.1 0.845 139.8 -2.4-100.3 -53.5 -14.7 -23.0 -9.3 24 32 A N < - 0 0 109 -4,-3.0 2,-2.1 -7,-0.2 3,-0.3 -0.668 60.8-176.6-144.0 83.4 -17.4 -20.3 -9.9 25 33 A P + 0 0 94 0, 0.0 -4,-0.1 0, 0.0 -8,-0.0 -0.385 66.8 82.3 -80.9 63.1 -16.2 -17.2 -11.7 26 34 A D + 0 0 129 -2,-2.1 -5,-0.0 -6,-0.0 7,-0.0 -0.015 68.0 74.8-154.9 34.7 -19.5 -15.4 -11.5 27 35 A K + 0 0 179 -3,-0.3 3,-0.1 2,-0.1 -10,-0.1 0.475 64.9 109.6-124.3 -14.7 -19.5 -13.8 -8.0 28 36 A V S S- 0 0 36 1,-0.1 5,-0.1 -11,-0.1 -15,-0.0 -0.354 82.0 -94.6 -65.9 144.6 -17.1 -10.9 -8.6 29 37 A S > - 0 0 77 1,-0.1 4,-3.2 3,-0.1 5,-0.2 -0.264 32.6-116.2 -59.6 144.9 -18.7 -7.4 -8.6 30 38 A Q H > S+ 0 0 127 2,-0.2 4,-2.0 1,-0.2 5,-0.2 0.926 117.3 41.7 -47.7 -53.9 -19.5 -6.2 -12.1 31 39 A A H > S+ 0 0 74 1,-0.2 4,-1.5 2,-0.2 3,-0.3 0.964 118.6 44.8 -60.1 -53.2 -17.0 -3.3 -11.8 32 40 A T H > S+ 0 0 38 1,-0.2 4,-1.8 2,-0.2 -1,-0.2 0.763 109.7 59.8 -62.2 -24.7 -14.4 -5.5 -10.2 33 41 A R H X S+ 0 0 110 -4,-3.2 4,-2.1 2,-0.2 -1,-0.2 0.906 102.8 49.0 -70.6 -42.8 -15.2 -8.1 -12.8 34 42 A N H X S+ 0 0 100 -4,-2.0 4,-1.7 -3,-0.3 -2,-0.2 0.848 110.8 51.9 -65.6 -33.7 -14.3 -5.8 -15.7 35 43 A R H X S+ 0 0 149 -4,-1.5 4,-3.5 2,-0.2 5,-0.2 0.916 107.6 51.5 -68.7 -43.4 -11.0 -5.0 -14.0 36 44 A V H X S+ 0 0 58 -4,-1.8 4,-2.4 2,-0.2 5,-0.2 0.943 106.5 53.8 -58.4 -50.5 -10.1 -8.6 -13.6 37 45 A E H X S+ 0 0 107 -4,-2.1 4,-1.1 1,-0.2 -1,-0.2 0.927 117.1 37.2 -50.6 -50.1 -10.7 -9.4 -17.2 38 46 A K H X S+ 0 0 128 -4,-1.7 4,-1.7 1,-0.2 3,-0.3 0.888 115.1 54.5 -70.2 -39.6 -8.4 -6.7 -18.3 39 47 A A H X S+ 0 0 17 -4,-3.5 4,-1.7 1,-0.2 -2,-0.2 0.754 103.2 59.0 -65.7 -23.5 -6.0 -7.3 -15.4 40 48 A A H X S+ 0 0 34 -4,-2.4 4,-2.6 -5,-0.2 5,-0.4 0.878 103.9 48.9 -73.0 -38.4 -5.8 -11.0 -16.6 41 49 A R H < S+ 0 0 185 -4,-1.1 -2,-0.2 -3,-0.3 -1,-0.2 0.882 108.1 55.2 -68.3 -38.0 -4.5 -10.0 -20.0 42 50 A E H < S+ 0 0 149 -4,-1.7 -2,-0.2 1,-0.2 -1,-0.2 0.952 121.9 27.6 -59.4 -51.0 -1.9 -7.8 -18.5 43 51 A V H < S- 0 0 25 -4,-1.7 -2,-0.2 2,-0.1 -1,-0.2 0.744 87.2-164.1 -82.5 -24.5 -0.5 -10.6 -16.3 44 52 A G < + 0 0 54 -4,-2.6 2,-0.4 -5,-0.2 -3,-0.2 0.817 50.5 115.8 42.3 38.4 -1.6 -13.2 -18.8 45 53 A Y + 0 0 135 -5,-0.4 -41,-0.7 1,-0.0 -1,-0.1 -0.933 17.9 135.0-140.7 114.7 -1.1 -15.8 -16.1 46 54 A L 0 0 110 -2,-0.4 -43,-0.0 -43,-0.1 -1,-0.0 -0.352 360.0 360.0-156.4 65.6 -3.9 -17.9 -14.6 47 55 A P 0 0 126 0, 0.0 -44,-0.0 0, 0.0 -1,-0.0 0.508 360.0 360.0 -44.0 360.0 -3.0 -21.6 -14.3