==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-FEB-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 08-AUG-11 2LHG . COMPND 2 MOLECULE: GB98; . SOURCE 2 ORGANISM_SCIENTIFIC: ARTIFICIAL GENE; . AUTHOR Y.HE,Y.CHEN,P.ALEXANDER,P.BRYAN,J.ORBAN . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4305.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 80.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 33 58.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T >> 0 0 96 0, 0.0 4,-1.7 0, 0.0 3,-0.6 0.000 360.0 360.0 360.0 -50.0 5.9 15.5 -3.9 2 2 A T H >> + 0 0 53 35,-0.6 4,-1.8 1,-0.3 3,-0.6 0.924 360.0 40.9 -53.2 -52.1 2.6 15.9 -2.1 3 3 A Y H 34 S+ 0 0 8 1,-0.2 -1,-0.3 34,-0.2 6,-0.1 0.650 113.1 57.6 -73.0 -14.8 3.3 13.1 0.4 4 4 A K H <4 S+ 0 0 139 -3,-0.6 -1,-0.2 1,-0.1 -2,-0.2 0.719 109.6 43.2 -84.0 -24.0 6.9 14.4 0.7 5 5 A L H << S+ 0 0 135 -4,-1.7 2,-0.6 -3,-0.6 -2,-0.2 0.784 113.1 53.0 -91.1 -31.9 5.7 17.9 1.7 6 6 A I >X - 0 0 79 -4,-1.8 4,-1.5 -5,-0.2 3,-1.2 -0.924 63.0-161.6-114.0 115.5 3.0 16.8 4.2 7 7 A L H 3> S+ 0 0 121 -2,-0.6 4,-1.2 1,-0.3 -1,-0.1 0.803 93.4 61.9 -65.4 -29.8 4.0 14.4 6.9 8 8 A N H 34 S+ 0 0 128 1,-0.2 -1,-0.3 2,-0.2 -5,-0.1 0.774 111.2 39.6 -64.5 -26.6 0.4 13.5 7.5 9 9 A L H X> S+ 0 0 41 -3,-1.2 3,-1.1 -7,-0.2 4,-0.7 0.634 102.3 70.6 -96.3 -19.4 0.3 12.2 3.9 10 10 A K H 3X S+ 0 0 81 -4,-1.5 4,-1.1 1,-0.2 3,-0.4 0.822 88.9 65.0 -60.5 -32.1 3.8 10.7 4.2 11 11 A Q H 3X S+ 0 0 107 -4,-1.2 4,-2.1 1,-0.2 -1,-0.2 0.718 89.2 69.7 -64.9 -20.4 2.2 8.1 6.5 12 12 A A H <> S+ 0 0 15 -3,-1.1 4,-1.8 1,-0.2 -1,-0.2 0.946 101.2 41.7 -62.9 -50.7 0.2 7.0 3.5 13 13 A K H X S+ 0 0 62 -4,-0.7 4,-2.4 -3,-0.4 -1,-0.2 0.777 111.6 58.5 -68.1 -26.9 3.2 5.5 1.7 14 14 A E H X S+ 0 0 91 -4,-1.1 4,-1.0 2,-0.2 -1,-0.2 0.890 109.2 42.4 -70.4 -40.8 4.4 4.0 5.0 15 15 A E H X S+ 0 0 110 -4,-2.1 4,-2.0 2,-0.2 -2,-0.2 0.811 112.5 56.5 -71.0 -31.9 1.1 2.1 5.5 16 16 A A H X S+ 0 0 4 -4,-1.8 4,-1.5 2,-0.2 -2,-0.2 0.936 111.4 40.3 -64.1 -48.3 1.3 1.1 1.8 17 17 A I H X S+ 0 0 45 -4,-2.4 4,-2.4 1,-0.2 -1,-0.2 0.701 110.4 62.1 -74.9 -20.1 4.7 -0.4 2.2 18 18 A K H X S+ 0 0 130 -4,-1.0 4,-1.7 2,-0.2 -2,-0.2 0.922 105.3 44.9 -66.3 -46.6 3.6 -1.9 5.5 19 19 A E H X S+ 0 0 70 -4,-2.0 4,-1.7 2,-0.2 -2,-0.2 0.860 115.6 48.8 -64.7 -36.7 0.9 -3.9 3.8 20 20 A L H X>S+ 0 0 0 -4,-1.5 5,-2.8 2,-0.2 4,-1.2 0.938 112.7 44.7 -69.3 -48.6 3.4 -5.0 1.1 21 21 A V H <5S+ 0 0 79 -4,-2.4 -1,-0.2 1,-0.2 -2,-0.2 0.765 114.9 50.4 -70.6 -25.6 6.2 -6.0 3.4 22 22 A D H <5S+ 0 0 117 -4,-1.7 -1,-0.2 -5,-0.2 -2,-0.2 0.827 110.9 48.3 -76.0 -35.2 3.6 -7.8 5.5 23 23 A A H <5S- 0 0 47 -4,-1.7 -2,-0.2 -5,-0.2 -1,-0.2 0.676 115.8-119.6 -76.0 -18.5 2.3 -9.6 2.5 24 24 A G T <5 + 0 0 62 -4,-1.2 2,-1.2 1,-0.2 -3,-0.2 0.720 63.7 146.4 86.2 23.8 5.8 -10.5 1.5 25 25 A I >< + 0 0 28 -5,-2.8 4,-2.0 1,-0.2 -1,-0.2 -0.657 10.9 163.1 -95.8 80.3 5.7 -8.6 -1.8 26 26 A A H > + 0 0 56 -2,-1.2 4,-2.2 1,-0.2 5,-0.3 0.895 68.2 62.9 -65.4 -41.7 9.2 -7.3 -2.1 27 27 A E H > S+ 0 0 114 1,-0.2 4,-1.5 -3,-0.2 5,-0.3 0.909 115.0 31.1 -50.6 -50.2 8.9 -6.5 -5.8 28 28 A K H 4>S+ 0 0 46 3,-0.2 5,-1.4 2,-0.2 6,-0.4 0.778 110.5 67.6 -83.3 -28.7 6.3 -3.9 -5.3 29 29 A Y H <5S+ 0 0 74 -4,-2.0 -2,-0.2 1,-0.2 -1,-0.2 0.880 116.0 28.0 -52.8 -40.1 7.6 -2.9 -1.9 30 30 A F H <5S+ 0 0 142 -4,-2.2 -2,-0.2 -5,-0.1 -1,-0.2 0.758 136.9 27.2 -93.8 -29.7 10.6 -1.5 -3.6 31 31 A K T X5S+ 0 0 120 -4,-1.5 4,-1.2 -5,-0.3 -3,-0.2 0.907 114.3 50.4 -99.6 -60.2 9.1 -0.7 -7.0 32 32 A L T >45S+ 0 0 20 -5,-0.3 3,-0.8 1,-0.2 -3,-0.2 0.919 119.4 31.7 -54.1 -60.1 5.4 0.1 -6.7 33 33 A I G >4 S- 0 0 49 -37,-0.2 4,-1.8 -36,-0.1 -1,-0.3 -0.787 79.2-106.8-123.0 170.8 1.5 12.1 -5.1 39 39 A V H > S+ 0 0 6 -2,-0.3 4,-2.0 2,-0.2 5,-0.1 0.747 124.9 55.9 -66.5 -24.3 -0.4 10.8 -2.1 40 40 A E H > S+ 0 0 128 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.831 103.6 52.9 -73.9 -35.2 -3.2 10.1 -4.5 41 41 A G H > S+ 0 0 17 2,-0.2 4,-2.0 1,-0.2 -2,-0.2 0.880 110.4 48.5 -60.6 -40.1 -0.8 8.0 -6.5 42 42 A V H X S+ 0 0 2 -4,-1.8 4,-2.0 2,-0.2 -2,-0.2 0.899 109.1 51.9 -64.7 -42.5 -0.1 6.2 -3.3 43 43 A W H X S+ 0 0 122 -4,-2.0 4,-1.0 2,-0.2 -2,-0.2 0.833 109.2 50.9 -65.4 -33.2 -3.8 5.8 -2.7 44 44 A T H X S+ 0 0 82 -4,-2.0 4,-1.2 2,-0.2 3,-0.5 0.902 110.0 49.1 -65.0 -43.5 -4.1 4.3 -6.2 45 45 A Y H X S+ 0 0 53 -4,-2.0 4,-2.4 1,-0.2 -2,-0.2 0.806 98.7 69.2 -66.1 -30.0 -1.2 1.9 -5.3 46 46 A K H X S+ 0 0 86 -4,-2.0 4,-1.1 1,-0.2 -1,-0.2 0.903 102.4 44.0 -54.0 -44.1 -3.1 1.0 -2.1 47 47 A D H X S+ 0 0 102 -4,-1.0 4,-1.5 -3,-0.5 -1,-0.2 0.850 110.6 55.7 -67.7 -35.6 -5.7 -0.7 -4.2 48 48 A E H X S+ 0 0 75 -4,-1.2 4,-2.3 1,-0.2 -2,-0.2 0.829 99.3 61.5 -65.9 -32.7 -2.9 -2.3 -6.3 49 49 A I H X S+ 0 0 0 -4,-2.4 4,-2.0 1,-0.2 -1,-0.2 0.917 105.3 45.9 -59.6 -45.3 -1.4 -3.7 -3.2 50 50 A K H X S+ 0 0 126 -4,-1.1 4,-2.2 2,-0.2 -1,-0.2 0.839 110.4 55.5 -65.1 -34.0 -4.6 -5.7 -2.6 51 51 A T H < S+ 0 0 82 -4,-1.5 -2,-0.2 1,-0.2 -1,-0.2 0.885 113.7 39.6 -63.4 -40.0 -4.5 -6.7 -6.2 52 52 A F H < S+ 0 0 66 -4,-2.3 -2,-0.2 1,-0.2 -1,-0.2 0.743 112.6 57.2 -82.8 -25.2 -1.0 -8.1 -5.8 53 53 A T H < S+ 0 0 66 -4,-2.0 2,-0.7 -5,-0.2 -2,-0.2 0.913 96.3 68.8 -70.0 -44.8 -1.8 -9.6 -2.4 54 54 A V < + 0 0 99 -4,-2.2 -1,-0.1 1,-0.2 -4,-0.0 -0.687 50.2 148.5 -81.5 114.2 -4.6 -11.7 -3.7 55 55 A T 0 0 123 -2,-0.7 -1,-0.2 0, 0.0 -2,-0.1 0.509 360.0 360.0-120.0 -15.1 -3.2 -14.4 -5.9 56 56 A E 0 0 236 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.614 360.0 360.0-107.3 360.0 -5.8 -17.2 -5.3