==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=14-MAR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 15-DEC-11 2LMZ . COMPND 2 MOLECULE: CONOTOXIN IM17A; . SOURCE 2 ORGANISM_SCIENTIFIC: CONUS IMPERIALIS; . AUTHOR K.K.KHOO,C.A.GALEA,N.BOONYALAI,R.S.NORTON . 42 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3421.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 64.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 19.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 38.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A I 0 0 188 0, 0.0 5,-0.1 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 85.4 2.6 11.1 0.8 2 2 A P - 0 0 62 0, 0.0 4,-0.1 0, 0.0 0, 0.0 0.287 360.0 -43.2 -72.6-155.0 2.0 11.2 -2.9 3 3 A Y S S+ 0 0 201 1,-0.2 3,-0.1 2,-0.1 0, 0.0 0.866 137.9 0.6 -41.1-100.5 -0.6 9.0 -4.7 4 4 A a S S- 0 0 38 1,-0.2 2,-0.3 2,-0.1 -1,-0.2 0.930 115.8-111.9 -60.1 -41.9 -0.2 5.5 -3.1 5 5 A G - 0 0 1 1,-0.1 -1,-0.2 6,-0.0 -2,-0.1 -0.997 36.6 -63.9 146.7-140.0 2.6 6.9 -0.8 6 6 A Q S S+ 0 0 148 -2,-0.3 -1,-0.1 1,-0.2 2,-0.1 0.758 105.8 18.6-113.8 -56.8 6.4 6.2 -0.6 7 7 A T S > S- 0 0 67 -3,-0.1 4,-0.9 1,-0.1 -1,-0.2 -0.396 79.4-107.4-106.0-172.7 7.0 2.5 0.3 8 8 A G H > S+ 0 0 0 27,-1.1 4,-3.5 2,-0.2 5,-0.3 0.902 110.7 63.6 -84.5 -43.7 4.8 -0.6 0.1 9 9 A A H > S+ 0 0 35 26,-0.7 4,-0.5 1,-0.2 -1,-0.1 0.938 106.3 45.4 -45.2 -54.1 4.2 -0.9 3.9 10 10 A E H >> S+ 0 0 61 1,-0.2 3,-1.2 2,-0.2 4,-0.5 0.926 114.9 47.6 -59.3 -42.7 2.4 2.4 4.0 11 11 A a H >X S+ 0 0 0 -4,-0.9 3,-1.6 1,-0.3 4,-1.5 0.896 96.1 72.6 -66.9 -36.3 0.3 1.6 0.8 12 12 A Y H 3X S+ 0 0 3 -4,-3.5 4,-0.7 1,-0.3 -1,-0.3 0.750 92.7 59.6 -50.7 -20.3 -0.5 -1.9 2.3 13 13 A S H < S+ 0 0 0 -4,-1.5 3,-1.3 1,-0.3 5,-0.3 0.853 103.1 57.7 -46.6 -37.2 -5.5 -1.5 -0.3 16 16 A I H >< S+ 0 0 50 -4,-0.7 3,-3.8 1,-0.3 -1,-0.3 0.881 87.3 73.8 -66.1 -34.4 -7.1 -3.2 2.8 17 17 A K H << S+ 0 0 166 -3,-1.4 -1,-0.3 -4,-0.8 -2,-0.2 0.786 83.2 72.0 -50.9 -21.3 -9.7 -0.4 3.1 18 18 A Q T << S- 0 0 98 -3,-1.3 -1,-0.3 -4,-0.6 -2,-0.2 0.707 99.2-140.4 -68.9 -14.8 -11.3 -2.1 0.1 19 19 A D < + 0 0 144 -3,-3.8 -2,-0.1 -4,-0.2 -3,-0.1 0.913 61.9 125.4 58.1 42.9 -12.3 -4.9 2.5 20 20 A L S S- 0 0 92 -5,-0.3 2,-0.3 1,-0.2 -4,-0.1 0.894 74.1 -55.1 -95.6 -59.9 -11.4 -7.7 -0.1 21 21 A S >> - 0 0 67 1,-0.1 4,-1.3 -5,-0.0 3,-0.6 -0.911 37.8-107.9-178.2 150.2 -9.0 -10.0 1.7 22 22 A K H 3> S+ 0 0 142 1,-0.3 4,-1.3 -2,-0.3 -1,-0.1 0.861 125.6 46.0 -57.9 -30.7 -5.6 -9.9 3.5 23 23 A D H 3> S+ 0 0 93 2,-0.2 4,-1.7 1,-0.2 -1,-0.3 0.721 98.8 73.3 -83.6 -19.8 -4.1 -11.6 0.5 24 24 A W H <> S+ 0 0 65 -3,-0.6 4,-0.8 2,-0.2 -2,-0.2 0.970 106.6 32.6 -58.4 -52.9 -5.9 -9.2 -1.8 25 25 A b H >X>S+ 0 0 0 -4,-1.3 4,-1.6 2,-0.2 3,-1.1 0.938 109.5 66.0 -71.6 -44.4 -3.6 -6.3 -0.9 26 26 A c H 3<5S+ 0 0 21 -4,-1.3 4,-0.5 1,-0.3 -1,-0.2 0.882 110.8 38.7 -44.3 -39.4 -0.5 -8.5 -0.4 27 27 A D H 3X5S+ 0 0 96 -4,-1.7 4,-0.6 3,-0.1 -1,-0.3 0.693 117.5 52.4 -86.1 -18.8 -0.7 -9.3 -4.2 28 28 A F H XX5S+ 0 0 52 -3,-1.1 4,-1.2 -4,-0.8 3,-0.9 0.971 112.7 36.6 -81.9 -65.4 -1.7 -5.7 -5.1 29 29 A V H 3<>S+ 0 0 1 -4,-1.6 5,-0.5 1,-0.3 -3,-0.1 0.810 118.9 54.4 -59.2 -24.5 1.0 -3.5 -3.4 30 30 A K H 34 - 0 0 28 0, 0.0 4,-0.6 0, 0.0 3,-0.4 -0.354 9.8-133.7 -80.2 163.1 7.4 -5.2 4.3 38 38 A A T 4 S+ 0 0 102 1,-0.2 0, 0.0 2,-0.1 0, 0.0 0.436 98.3 69.0 -97.8 1.4 7.9 -8.7 5.8 39 39 A D T 4 S+ 0 0 133 1,-0.1 -1,-0.2 3,-0.0 0, 0.0 0.048 100.3 46.5-105.5 27.0 5.9 -7.8 8.9 40 40 A K T 4 S+ 0 0 85 -3,-0.4 -2,-0.1 1,-0.3 -1,-0.1 0.591 111.8 35.3-131.8 -45.0 2.5 -7.6 7.1 41 41 A c < 0 0 36 -4,-0.6 -1,-0.3 1,-0.1 -18,-0.0 -0.938 360.0 360.0-122.9 114.5 2.2 -10.6 4.7 42 42 A P 0 0 172 0, 0.0 -1,-0.1 0, 0.0 -4,-0.0 0.835 360.0 360.0 -72.8 360.0 3.5 -14.0 5.8