==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER GENE REGULATING PROTEIN 13-NOV-96 2R63 . COMPND 2 MOLECULE: REPRESSOR PROTEIN FROM BACTERIOPHAGE 434; . SOURCE 2 ORGANISM_SCIENTIFIC: PHAGE 434; . AUTHOR K.V.PERVUSHIN,M.BILLETER,G.SIEGAL,K.WUTHRICH . 63 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4206.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 44 69.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 30 47.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 6.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S >> 0 0 126 0, 0.0 3,-1.7 0, 0.0 4,-1.2 0.000 360.0 360.0 360.0 164.0 4.9 -1.8 10.9 2 2 A I H 3> + 0 0 28 1,-0.3 4,-2.3 2,-0.2 3,-0.3 0.828 360.0 56.0 -46.6 -46.6 4.6 0.0 7.5 3 3 A S H 3> S+ 0 0 7 31,-0.4 4,-3.1 1,-0.3 -1,-0.3 0.873 104.8 55.1 -56.8 -37.2 1.9 -2.3 6.1 4 4 A S H <> S+ 0 0 71 -3,-1.7 4,-2.9 2,-0.2 5,-0.3 0.921 106.6 50.5 -56.5 -47.2 -0.2 -1.5 9.2 5 5 A R H X S+ 0 0 64 -4,-1.2 4,-1.6 -3,-0.3 -2,-0.2 0.961 115.2 42.9 -59.6 -53.6 0.1 2.3 8.5 6 6 A V H >X S+ 0 0 2 -4,-2.3 4,-2.0 2,-0.2 3,-0.5 0.971 117.8 45.0 -50.8 -65.9 -1.0 1.7 4.9 7 7 A K H 3X S+ 0 0 28 -4,-3.1 4,-2.9 1,-0.2 5,-0.2 0.927 109.0 52.6 -48.8 -62.8 -3.8 -0.8 5.8 8 8 A S H 3X S+ 0 0 65 -4,-2.9 4,-2.1 1,-0.2 -1,-0.2 0.820 109.4 51.7 -55.3 -31.2 -5.3 1.2 8.7 9 9 A K H S+ 0 0 2 -4,-2.0 4,-2.1 1,-0.2 5,-1.7 0.887 110.8 55.9 -48.3 -50.0 -7.4 2.2 3.8 11 11 A I H ><5S+ 0 0 105 -4,-2.9 3,-0.6 2,-0.2 -1,-0.2 0.951 111.7 40.9 -52.5 -56.3 -9.6 0.6 6.4 12 12 A Q H 3<5S+ 0 0 172 -4,-2.1 -1,-0.2 1,-0.3 -2,-0.2 0.912 115.5 52.1 -58.7 -42.0 -10.9 3.9 7.8 13 13 A L H 3<5S- 0 0 117 -4,-2.7 -1,-0.3 -5,-0.2 -2,-0.2 0.753 120.8-112.5 -63.6 -27.3 -11.1 5.2 4.2 14 14 A G T <<5S+ 0 0 59 -4,-2.1 -3,-0.2 -3,-0.6 -4,-0.1 0.163 76.7 122.5 112.5 -10.2 -13.2 2.1 3.3 15 15 A L < - 0 0 48 -5,-1.7 -1,-0.4 -6,-0.2 2,-0.2 -0.241 37.4-171.9 -83.5 166.8 -10.7 0.4 1.0 16 16 A N > - 0 0 74 -3,-0.1 4,-2.9 -6,-0.0 5,-0.2 -0.765 46.4 -69.7-141.9-172.3 -9.2 -3.1 1.4 17 17 A Q H > S+ 0 0 63 -2,-0.2 4,-2.9 2,-0.2 5,-0.2 0.793 126.6 48.2 -57.0 -40.2 -6.4 -5.2 -0.3 18 18 A A H > S+ 0 0 43 2,-0.2 4,-2.8 3,-0.2 5,-0.2 0.997 116.0 41.1 -67.9 -63.5 -8.2 -5.7 -3.6 19 19 A E H > S+ 0 0 81 1,-0.2 4,-3.0 2,-0.2 5,-0.3 0.899 118.4 51.1 -44.2 -52.7 -9.2 -2.0 -4.2 20 20 A L H X S+ 0 0 7 -4,-2.9 4,-2.9 2,-0.2 5,-0.3 0.976 110.5 45.2 -49.3 -66.3 -5.7 -1.1 -2.9 21 21 A A H X>S+ 0 0 2 -4,-2.9 4,-2.5 1,-0.2 5,-2.1 0.871 116.8 47.7 -52.3 -43.2 -3.8 -3.4 -5.2 22 22 A Q H <5S+ 0 0 148 -4,-2.8 -1,-0.2 2,-0.2 -2,-0.2 0.964 113.3 45.0 -56.9 -61.2 -5.9 -2.3 -8.2 23 23 A K H <5S+ 0 0 118 -4,-3.0 -2,-0.2 1,-0.3 -1,-0.2 0.854 118.2 44.8 -58.4 -40.1 -5.6 1.4 -7.5 24 24 A V H <5S- 0 0 8 -4,-2.9 -1,-0.3 -5,-0.3 -2,-0.2 0.895 106.0-132.2 -63.4 -47.0 -1.9 1.0 -6.9 25 25 A G T <5 + 0 0 63 -4,-2.5 -3,-0.2 -5,-0.3 2,-0.1 0.804 62.5 124.4 87.1 38.6 -1.5 -1.2 -10.0 26 26 A T < - 0 0 30 -5,-2.1 2,-0.3 -6,-0.2 -1,-0.2 -0.396 68.9 -83.7-109.0-173.5 0.5 -3.9 -8.2 27 27 A T >> - 0 0 70 -2,-0.1 4,-0.9 1,-0.1 3,-0.6 -0.747 32.5-123.5 -90.9 148.1 -0.0 -7.7 -7.8 28 28 A Q H >> S+ 0 0 89 -2,-0.3 4,-1.4 1,-0.3 3,-1.4 0.940 113.8 60.0 -57.3 -45.1 -2.3 -8.8 -5.0 29 29 A Q H 3> S+ 0 0 132 1,-0.3 4,-2.9 2,-0.2 -1,-0.3 0.857 96.5 60.9 -46.0 -43.3 0.6 -10.9 -3.7 30 30 A S H <> S+ 0 0 5 -3,-0.6 4,-2.3 1,-0.2 -1,-0.3 0.829 101.0 53.3 -62.2 -32.1 2.6 -7.7 -3.3 31 31 A I H <>S+ 0 0 78 -4,-2.9 3,-1.8 1,-0.2 5,-1.5 0.867 104.3 55.4 -57.6 -40.3 4.1 -9.4 1.0 34 34 A L H ><5S+ 0 0 11 -4,-2.3 3,-1.6 1,-0.3 -31,-0.4 0.970 109.5 47.4 -53.2 -49.7 4.0 -5.8 2.2 35 35 A E T 3<5S+ 0 0 109 -4,-2.1 -1,-0.3 1,-0.3 -2,-0.2 0.256 98.7 69.8 -77.9 10.9 2.2 -7.2 5.2 36 36 A N T < 5S- 0 0 97 -3,-1.8 -1,-0.3 -5,-0.1 -2,-0.2 0.184 108.3-124.4-102.4 8.9 4.9 -9.9 5.5 37 37 A G T < 5S+ 0 0 60 -3,-1.6 -3,-0.2 1,-0.1 -2,-0.1 0.805 70.6 135.8 56.1 30.0 7.4 -7.1 6.5 38 38 A K < + 0 0 129 -5,-1.5 2,-0.3 1,-0.2 -4,-0.1 0.737 56.3 24.9 -84.3 -29.6 9.4 -8.4 3.6 39 39 A T - 0 0 64 -6,-0.3 -1,-0.2 -5,-0.2 -2,-0.1 -0.994 42.6-164.2-150.2 131.4 10.6 -5.2 1.8 40 40 A K S S+ 0 0 147 -2,-0.3 -1,-0.1 1,-0.3 -2,-0.0 0.834 98.7 44.4 -79.4 -41.4 11.2 -1.5 2.7 41 41 A R S S- 0 0 176 2,-0.0 -1,-0.3 4,-0.0 2,-0.1 -0.830 83.4-170.2-104.4 84.2 11.2 -0.5 -1.0 42 42 A P > - 0 0 17 0, 0.0 3,-1.5 0, 0.0 2,-1.0 -0.418 38.3-103.9 -72.3 160.0 8.2 -2.4 -2.5 43 43 A R T 3 S+ 0 0 210 1,-0.3 -13,-0.0 2,-0.1 -2,-0.0 0.022 117.9 38.4 -80.4 33.8 8.0 -2.3 -6.3 44 44 A F T 3> + 0 0 9 -2,-1.0 4,-2.5 -14,-0.1 -1,-0.3 0.067 69.7 135.1-167.4 24.2 5.2 0.3 -6.2 45 45 A L H <> S+ 0 0 7 -3,-1.5 4,-2.6 2,-0.2 3,-0.2 0.942 80.8 40.1 -54.2 -54.4 6.1 2.7 -3.3 46 46 A P H > S+ 0 0 72 0, 0.0 4,-2.3 0, 0.0 5,-0.2 0.946 115.8 53.8 -61.1 -42.2 5.3 6.0 -5.2 47 47 A E H > S+ 0 0 97 1,-0.2 4,-2.4 2,-0.2 -2,-0.2 0.837 109.2 48.3 -54.9 -40.2 2.2 4.3 -6.7 48 48 A L H X S+ 0 0 1 -4,-2.5 4,-2.4 2,-0.2 5,-0.3 0.915 107.1 56.2 -67.6 -44.0 1.2 3.4 -3.1 49 49 A A H X>S+ 0 0 6 -4,-2.6 5,-2.8 -5,-0.2 4,-0.6 0.912 111.8 42.0 -56.4 -41.4 1.8 7.0 -2.1 50 50 A S H ><5S+ 0 0 83 -4,-2.3 3,-1.0 3,-0.2 -1,-0.2 0.938 109.7 60.5 -68.8 -41.7 -0.6 8.2 -4.8 51 51 A A H 3<5S+ 0 0 6 -4,-2.4 -2,-0.2 1,-0.3 -1,-0.2 0.820 117.2 28.6 -57.4 -41.0 -3.0 5.3 -3.9 52 52 A L H 3<5S- 0 0 27 -4,-2.4 -1,-0.3 2,-0.1 -2,-0.2 0.395 109.8-118.6 -94.2 0.3 -3.4 6.6 -0.3 53 53 A G T <<5S+ 0 0 68 -3,-1.0 2,-0.2 -4,-0.6 -3,-0.2 0.953 74.8 124.6 57.6 47.7 -2.8 10.2 -1.2 54 54 A V < - 0 0 36 -5,-2.8 2,-0.2 -6,-0.2 -1,-0.2 -0.731 64.3 -98.2-120.4 174.0 0.2 10.3 1.1 55 55 A S > - 0 0 53 -2,-0.2 4,-2.1 1,-0.1 5,-0.1 -0.638 20.3-125.2 -92.4 158.9 3.8 11.2 0.3 56 56 A V H > S+ 0 0 60 -2,-0.2 4,-2.9 2,-0.2 5,-0.3 0.912 114.1 59.6 -63.3 -43.8 6.6 8.8 -0.3 57 57 A D H > S+ 0 0 102 1,-0.2 4,-3.3 2,-0.2 5,-0.3 0.942 108.4 43.6 -48.5 -55.1 8.5 10.5 2.5 58 58 A W H 4 S+ 0 0 44 2,-0.2 -1,-0.2 3,-0.2 -2,-0.2 0.872 111.9 53.0 -59.8 -44.6 5.7 9.6 4.9 59 59 A L H < S+ 0 0 1 -4,-2.1 -1,-0.2 1,-0.2 -2,-0.2 0.959 118.8 35.1 -59.2 -49.5 5.4 6.0 3.6 60 60 A L H < S+ 0 0 62 -4,-2.9 -2,-0.2 -5,-0.1 -1,-0.2 0.951 136.3 22.5 -67.9 -50.4 9.1 5.3 4.1 61 61 A N S < S- 0 0 126 -4,-3.3 -3,-0.2 -5,-0.3 -2,-0.1 0.940 85.8-166.8 -83.7 -83.2 9.5 7.4 7.3 62 62 A G 0 0 9 -5,-0.3 -4,-0.1 1,-0.1 -3,-0.1 0.939 360.0 360.0 92.8 70.0 6.0 7.6 8.7 63 63 A T 0 0 171 0, 0.0 -1,-0.1 0, 0.0 -5,-0.1 0.344 360.0 360.0 60.1 360.0 5.5 10.2 11.5