==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN 25-FEB-04 1VB8 . COMPND 2 MOLECULE: VIOLA HEDERACEA ROOT PEPTIDE 1; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA HEDERACEA; . AUTHOR M.TRABI,D.J.CRAIK . 30 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2364.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 6.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 9 0, 0.0 2,-2.2 0, 0.0 24,-0.2 0.000 360.0 360.0 360.0 130.6 4.4 0.4 -3.3 2 2 A A + 0 0 106 28,-0.3 2,-0.3 22,-0.1 24,-0.1 -0.330 360.0 96.0 -79.4 57.8 3.1 -2.9 -4.8 3 3 A E - 0 0 30 -2,-2.2 22,-3.4 22,-0.4 2,-0.6 -0.896 51.7-168.5-151.9 116.3 0.2 -3.0 -2.5 4 4 A S - 0 0 67 -2,-0.3 2,-1.2 20,-0.3 3,-0.5 -0.929 11.9-155.2-110.5 118.5 -3.3 -1.9 -3.1 5 5 A b + 0 0 7 -2,-0.6 19,-0.2 1,-0.2 18,-0.2 -0.314 48.0 134.3 -87.8 53.4 -5.7 -1.7 -0.2 6 6 A V S S- 0 0 60 -2,-1.2 -1,-0.2 17,-0.2 18,-0.1 0.927 95.3 -13.0 -65.8 -44.2 -8.8 -2.0 -2.3 7 7 A W S S+ 0 0 225 -3,-0.5 -2,-0.1 1,-0.4 16,-0.0 0.660 139.1 44.7-120.6 -60.5 -10.2 -4.6 0.2 8 8 A I S S- 0 0 128 -4,-0.3 -1,-0.4 1,-0.1 -2,-0.2 -0.756 86.6-120.1 -93.5 134.4 -7.4 -5.6 2.5 9 9 A P - 0 0 87 0, 0.0 2,-0.1 0, 0.0 -5,-0.1 -0.211 41.7 -78.1 -68.9 162.5 -5.1 -2.9 3.9 10 10 A c + 0 0 19 1,-0.2 10,-0.1 -7,-0.1 -7,-0.0 -0.385 57.4 153.5 -63.7 133.5 -1.3 -2.8 3.3 11 11 A T S S+ 0 0 109 -2,-0.1 4,-0.4 -3,-0.1 -1,-0.2 0.534 70.1 45.8-131.2 -30.2 0.6 -5.2 5.5 12 12 A V S S+ 0 0 112 2,-0.1 3,-0.4 1,-0.1 -2,-0.1 0.938 125.8 26.8 -83.1 -53.9 3.7 -6.0 3.5 13 13 A T S > >S+ 0 0 18 1,-0.2 5,-0.8 2,-0.1 3,-0.7 0.460 102.9 87.0 -89.2 -0.9 4.8 -2.5 2.4 14 14 A A G > 5S+ 0 0 44 1,-0.3 3,-1.0 2,-0.2 4,-0.5 0.914 91.9 44.1 -63.2 -43.1 3.1 -1.0 5.5 15 15 A L G 3 5S+ 0 0 171 -4,-0.4 -1,-0.3 -3,-0.4 -2,-0.1 0.485 105.4 66.1 -80.2 -2.6 6.2 -1.5 7.6 16 16 A L G < 5S- 0 0 131 -3,-0.7 -1,-0.2 2,-0.1 -2,-0.2 0.481 127.0 -91.4 -95.4 -5.0 8.3 -0.2 4.7 17 17 A G T < 5S+ 0 0 40 -3,-1.0 2,-0.4 -4,-0.3 -3,-0.2 0.859 79.5 137.1 96.5 46.7 6.8 3.3 5.0 18 18 A a < - 0 0 12 -5,-0.8 2,-0.3 -4,-0.5 -1,-0.3 -0.989 30.7-165.5-128.2 130.5 3.8 3.2 2.7 19 19 A S - 0 0 66 -2,-0.4 7,-2.3 5,-0.1 2,-1.2 -0.804 33.3-101.5-114.2 156.5 0.3 4.6 3.4 20 20 A b B +A 25 0A 65 -2,-0.3 5,-0.3 5,-0.2 3,-0.2 -0.631 42.3 169.9 -78.1 96.3 -3.0 4.1 1.7 21 21 A S S S- 0 0 77 3,-1.6 -1,-0.2 -2,-1.2 4,-0.1 0.921 78.5 -15.1 -73.2 -45.7 -3.4 7.2 -0.3 22 22 A N S S- 0 0 135 2,-1.2 -1,-0.2 -3,-0.2 3,-0.1 -0.453 122.9 -47.6-162.8 79.3 -6.4 6.0 -2.3 23 23 A K S S+ 0 0 113 -18,-0.2 2,-0.3 -3,-0.2 -17,-0.2 0.522 128.6 69.7 67.4 6.7 -7.2 2.3 -2.1 24 24 A V S S- 0 0 47 -20,-0.3 -3,-1.6 -19,-0.2 -2,-1.2 -0.989 89.7-109.1-152.0 145.4 -3.5 1.7 -2.9 25 25 A c B +A 20 0A 1 -22,-3.4 -22,-0.4 -2,-0.3 2,-0.3 -0.668 46.1 156.5 -80.7 122.0 -0.3 2.3 -1.0 26 26 A Y + 0 0 127 -7,-2.3 2,-0.4 -2,-0.5 -8,-0.1 -0.768 4.1 150.4-150.7 98.9 1.7 5.2 -2.4 27 27 A N S S- 0 0 86 2,-1.1 2,-2.1 -2,-0.3 -2,-0.0 -0.787 83.7 -50.1-133.5 88.2 4.2 7.1 -0.2 28 28 A G S S+ 0 0 81 -2,-0.4 -10,-0.1 -27,-0.0 -11,-0.0 -0.351 131.4 53.5 82.1 -58.3 7.0 8.5 -2.2 29 29 A I 0 0 99 -2,-2.1 -2,-1.1 1,-0.0 0, 0.0 -0.765 360.0 360.0-108.9 154.4 7.7 5.2 -4.0 30 30 A P 0 0 92 0, 0.0 -28,-0.3 0, 0.0 -4,-0.2 -0.582 360.0 360.0 -76.0 360.0 5.2 3.0 -5.9