==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=5-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NUCLEAR PROTEIN 31-MAR-08 2VRD . COMPND 2 MOLECULE: U1 SMALL NUCLEAR RIBONUCLEOPROTEIN C; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR Y.MUTO,D.POMERANZ-KRUMMEL,C.OUBRIDGE,H.HERNANDEZ,C.ROBINSON, . 61 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5867.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 35 57.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 4.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 8.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 14.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 29.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 209 0, 0.0 15,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 91.2 -1.6 9.4 -16.4 2 2 A P + 0 0 102 0, 0.0 13,-0.1 0, 0.0 12,-0.0 -0.185 360.0 38.2 -73.0 171.3 -4.5 10.9 -14.5 3 3 A K S S- 0 0 95 11,-0.3 2,-0.3 9,-0.0 11,-0.2 0.527 79.2-120.2 61.3 140.5 -6.1 9.2 -11.4 4 4 A F - 0 0 57 9,-0.3 9,-1.9 2,-0.0 2,-0.4 -0.794 20.5-157.5-112.7 157.7 -3.9 7.4 -8.9 5 5 A Y E -A 12 0A 111 -2,-0.3 2,-0.7 7,-0.2 7,-0.2 -0.995 9.5-149.9-136.4 140.2 -4.0 3.7 -7.8 6 6 A C E >>> -A 11 0A 8 5,-1.1 4,-1.4 -2,-0.4 3,-1.3 -0.823 4.9-169.6-110.4 97.4 -2.7 1.9 -4.7 7 7 A D T 345S+ 0 0 64 -2,-0.7 3,-0.4 1,-0.3 -1,-0.2 0.882 89.9 59.4 -52.4 -35.9 -1.7 -1.8 -5.5 8 8 A Y T 345S+ 0 0 33 1,-0.2 -1,-0.3 2,-0.1 29,-0.1 0.871 115.3 34.0 -62.7 -33.1 -1.5 -2.4 -1.7 9 9 A C T <45S- 0 0 43 -3,-1.3 -1,-0.2 2,-0.1 -2,-0.2 0.497 98.6-135.2-100.1 -3.0 -5.2 -1.5 -1.3 10 10 A D T <5 + 0 0 95 -4,-1.4 2,-0.2 -3,-0.4 -3,-0.2 0.891 66.9 117.0 53.2 38.3 -6.4 -2.9 -4.7 11 11 A T E < -A 6 0A 62 -5,-0.9 -5,-1.1 0, 0.0 2,-0.5 -0.798 65.2-123.8-129.3 173.5 -8.4 0.4 -5.2 12 12 A Y E -A 5 0A 131 -2,-0.2 -7,-0.2 -7,-0.2 -9,-0.0 -0.914 21.2-148.6-123.7 108.7 -8.5 3.3 -7.8 13 13 A L - 0 0 23 -9,-1.9 -9,-0.3 -2,-0.5 3,-0.1 -0.321 1.8-151.8 -69.6 157.1 -8.1 6.8 -6.4 14 14 A T S S+ 0 0 82 1,-0.2 2,-0.7 -11,-0.2 -11,-0.3 0.770 81.3 49.6-101.9 -31.2 -9.8 9.7 -8.3 15 15 A H - 0 0 118 -12,-0.1 2,-2.0 -13,-0.1 -1,-0.2 -0.831 63.6-168.4-112.0 98.5 -7.6 12.7 -7.5 16 16 A D + 0 0 72 -2,-0.7 -11,-0.0 -3,-0.1 -1,-0.0 -0.436 40.5 134.1 -82.4 71.1 -3.9 12.0 -8.1 17 17 A S S > S- 0 0 41 -2,-2.0 4,-1.5 1,-0.1 5,-0.3 -0.537 71.4-101.1-110.3 179.9 -2.5 15.1 -6.4 18 18 A P H > S+ 0 0 113 0, 0.0 4,-0.9 0, 0.0 5,-0.1 0.815 121.5 36.9 -72.8 -30.1 0.3 15.8 -3.9 19 19 A S H > S+ 0 0 81 2,-0.2 4,-3.7 3,-0.1 5,-0.2 0.880 114.0 53.8 -89.8 -40.9 -2.1 16.0 -0.9 20 20 A V H > S+ 0 0 46 2,-0.2 4,-2.7 1,-0.2 5,-0.2 0.964 110.8 46.8 -58.7 -50.5 -4.7 13.3 -1.9 21 21 A R H X S+ 0 0 71 -4,-1.5 4,-1.7 2,-0.2 -1,-0.2 0.971 117.8 41.9 -57.6 -51.6 -2.0 10.6 -2.4 22 22 A K H < S+ 0 0 136 -4,-0.9 -1,-0.2 -5,-0.3 -2,-0.2 0.937 111.0 57.5 -62.1 -41.1 -0.3 11.5 1.0 23 23 A T H >< S+ 0 0 92 -4,-3.7 3,-1.2 1,-0.3 -1,-0.2 0.940 105.8 50.4 -54.8 -43.0 -3.9 11.8 2.5 24 24 A H H 3< S+ 0 0 62 -4,-2.7 -1,-0.3 1,-0.3 -2,-0.2 0.894 113.7 46.1 -62.4 -36.1 -4.4 8.2 1.4 25 25 A C T 3< S+ 0 0 73 -4,-1.7 -1,-0.3 -5,-0.2 -2,-0.2 -0.196 84.0 101.8 -99.4 44.8 -1.1 7.3 3.1 26 26 A S < + 0 0 96 -3,-1.2 2,-0.4 -2,-0.2 -1,-0.2 -0.124 61.8 82.7-116.5 38.2 -1.7 9.2 6.4 27 27 A G > - 0 0 41 -3,-0.2 3,-1.8 1,-0.1 4,-0.5 -0.969 69.8-140.1-143.1 127.3 -2.7 6.3 8.7 28 28 A R T >> S+ 0 0 240 -2,-0.4 3,-1.1 1,-0.3 4,-0.8 0.832 102.7 69.4 -54.4 -28.3 -0.4 3.8 10.6 29 29 A K H 3> S+ 0 0 143 1,-0.2 4,-3.1 2,-0.2 -1,-0.3 0.857 80.6 74.8 -60.7 -32.2 -3.0 1.0 9.6 30 30 A H H <> S+ 0 0 28 -3,-1.8 4,-1.8 1,-0.2 -1,-0.2 0.882 92.5 55.3 -49.8 -37.1 -1.8 1.4 5.9 31 31 A K H X> S+ 0 0 128 -3,-1.1 4,-0.8 -4,-0.5 3,-0.6 0.989 111.9 40.1 -61.8 -55.6 1.4 -0.6 6.9 32 32 A E H >X S+ 0 0 149 -4,-0.8 3,-1.1 1,-0.2 4,-0.8 0.918 110.5 61.1 -59.6 -38.8 -0.6 -3.6 8.3 33 33 A N H >X S+ 0 0 75 -4,-3.1 3,-0.9 1,-0.3 4,-0.8 0.894 93.5 64.3 -55.9 -37.3 -3.0 -3.3 5.4 34 34 A V H XX S+ 0 0 2 -4,-1.8 4,-1.5 -3,-0.6 3,-1.3 0.886 90.1 66.7 -56.1 -35.3 -0.1 -3.9 3.0 35 35 A K H << S+ 0 0 99 -3,-1.1 -1,-0.2 -4,-0.8 4,-0.2 0.922 93.7 58.6 -53.4 -41.5 0.3 -7.5 4.5 36 36 A D H X< S+ 0 0 112 -3,-0.9 3,-0.6 -4,-0.8 4,-0.4 0.839 103.2 54.7 -58.4 -29.3 -3.2 -8.3 3.0 37 37 A Y H << S+ 0 0 107 -3,-1.3 3,-0.4 -4,-0.8 -2,-0.2 0.975 120.7 26.6 -70.9 -52.3 -1.7 -7.5 -0.5 38 38 A Y T 3< S+ 0 0 23 -4,-1.5 8,-0.3 1,-0.2 -1,-0.2 -0.001 92.9 104.2 -99.6 33.8 1.3 -9.9 -0.2 39 39 A Q S < S+ 0 0 112 -3,-0.6 5,-0.2 -4,-0.2 -1,-0.2 0.895 96.6 20.7 -79.9 -38.1 -0.3 -12.4 2.2 40 40 A K S S+ 0 0 176 -3,-0.4 -1,-0.2 -4,-0.4 -2,-0.1 0.058 84.2 121.3-116.5 26.4 -1.0 -15.1 -0.4 41 41 A W S S- 0 0 165 1,-0.2 -1,-0.1 3,-0.2 -2,-0.1 0.928 104.1 -14.8 -56.1 -43.1 1.5 -14.1 -3.2 42 42 A M S S- 0 0 92 -4,-0.2 -1,-0.2 2,-0.2 3,-0.1 -0.007 97.8 -93.0-152.7 38.6 3.2 -17.5 -3.0 43 43 A E S S+ 0 0 161 1,-0.2 2,-0.2 -4,-0.0 -3,-0.1 0.889 99.8 90.6 51.3 39.7 2.0 -19.3 0.2 44 44 A E S S- 0 0 139 -5,-0.2 2,-0.5 2,-0.0 -2,-0.2 -0.729 83.2 -86.2-144.4-165.6 5.1 -17.9 2.1 45 45 A Q + 0 0 174 -2,-0.2 2,-0.3 -3,-0.1 -6,-0.1 -0.948 35.1 171.7-117.3 124.0 6.3 -14.9 4.2 46 46 A A + 0 0 19 -2,-0.5 4,-0.2 -8,-0.3 -8,-0.1 -0.644 21.7 140.0-129.9 79.0 7.6 -11.7 2.4 47 47 A Q + 0 0 112 -2,-0.3 4,-0.2 2,-0.1 -1,-0.1 -0.081 60.8 70.7-109.3 36.3 8.1 -8.8 5.0 48 48 A S S > S+ 0 0 96 2,-0.1 4,-1.3 3,-0.1 3,-0.4 0.753 89.6 50.2-114.6 -55.0 11.4 -7.5 3.5 49 49 A L H > S+ 0 0 81 1,-0.2 4,-1.5 2,-0.2 5,-0.2 0.780 103.6 66.0 -59.0 -22.5 10.7 -5.8 0.2 50 50 A I H > S+ 0 0 8 -4,-0.2 4,-4.1 2,-0.2 3,-0.5 0.976 99.5 48.2 -65.1 -51.4 7.9 -3.8 1.9 51 51 A D H >>S+ 0 0 84 -3,-0.4 4,-2.4 1,-0.2 5,-0.8 0.904 108.7 55.6 -56.2 -39.3 10.3 -1.8 4.2 52 52 A K H X5S+ 0 0 162 -4,-1.3 4,-0.8 3,-0.2 -1,-0.2 0.892 119.6 31.2 -63.0 -36.0 12.5 -1.0 1.1 53 53 A T H <5S+ 0 0 53 -4,-1.5 -2,-0.2 -3,-0.5 -1,-0.2 0.866 121.1 49.3 -90.1 -38.7 9.5 0.6 -0.7 54 54 A T H <5S+ 0 0 58 -4,-4.1 3,-0.4 -5,-0.2 -3,-0.2 0.896 126.3 28.4 -68.1 -36.2 7.6 1.9 2.4 55 55 A A H <5S+ 0 0 53 -4,-2.4 2,-0.7 -5,-0.4 3,-0.3 0.887 126.5 43.9 -91.0 -43.8 10.8 3.6 3.8 56 56 A A S <