==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 20-JUL-04 1WMT . COMPND 2 MOLECULE: ISTX; . SOURCE 2 SYNTHETIC: YES; . AUTHOR N.YAMAJI,L.DAI,K.SUGASE,M.ANDRIANTSIFERANA,T.NAKAJIMA, . 40 1 4 4 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3031.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 55.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 15.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 7.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 15.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 2 A H 0 0 140 0, 0.0 32,-0.2 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 114.7 0.5 -1.8 8.3 2 3 A T - 0 0 22 30,-1.8 14,-0.0 2,-0.1 0, 0.0 -0.634 360.0-132.3-109.2 171.2 -3.0 -1.7 6.8 3 4 A N + 0 0 120 -2,-0.2 30,-0.1 28,-0.2 -1,-0.0 -0.051 51.9 144.9-113.8 33.1 -5.5 -4.5 6.1 4 5 A I - 0 0 31 28,-0.2 28,-0.9 1,-0.1 2,-0.7 -0.573 54.4-121.5 -72.5 125.3 -6.2 -3.6 2.6 5 6 A P B +A 31 0A 111 0, 0.0 26,-0.3 0, 0.0 2,-0.2 -0.577 55.2 135.9 -74.5 110.2 -6.8 -6.9 0.6 6 7 A a - 0 0 26 24,-0.8 3,-0.1 -2,-0.7 26,-0.0 -0.749 51.8-138.8-141.1-172.4 -4.2 -7.1 -2.3 7 8 A R S S+ 0 0 231 1,-0.4 2,-0.3 -2,-0.2 23,-0.1 0.566 82.7 16.7-125.8 -29.6 -1.8 -9.4 -4.1 8 9 A G >> - 0 0 27 1,-0.1 4,-2.2 22,-0.1 3,-0.6 -0.995 68.6-118.4-148.8 153.7 1.2 -7.2 -4.7 9 10 A T H 3> S+ 0 0 55 -2,-0.3 2,-3.2 1,-0.3 4,-2.1 0.951 109.3 63.7 -56.9 -51.9 2.8 -3.9 -3.5 10 11 A S H 34 S+ 0 0 96 1,-0.2 -1,-0.3 2,-0.2 16,-0.1 -0.035 116.4 30.8 -67.7 43.5 2.6 -2.3 -7.0 11 12 A D H X4 S+ 0 0 112 -2,-3.2 3,-0.6 -3,-0.6 -1,-0.2 0.220 118.5 48.6-163.1 -41.9 -1.2 -2.5 -6.8 12 13 A b H 3X S+ 0 0 4 -4,-2.2 4,-0.5 1,-0.2 -2,-0.2 0.612 99.3 69.9 -84.3 -16.2 -2.1 -2.3 -3.1 13 14 A Y H 3X S+ 0 0 63 -4,-2.1 4,-1.3 -5,-0.3 -1,-0.2 0.528 79.9 77.9 -83.6 1.4 0.1 0.8 -2.7 14 15 A E H <> S+ 0 0 70 -3,-0.6 4,-3.2 2,-0.2 5,-0.4 0.945 91.3 51.7 -73.6 -43.2 -2.3 2.8 -4.8 15 16 A P H >>S+ 0 0 29 0, 0.0 4,-1.9 0, 0.0 5,-0.6 0.812 107.0 54.6 -61.2 -28.9 -4.8 3.1 -1.8 16 17 A c H <>S+ 0 0 0 -4,-0.5 6,-1.4 3,-0.2 5,-0.6 0.868 113.6 41.3 -75.9 -30.8 -1.9 4.4 0.3 17 18 A E H <5S+ 0 0 44 -4,-1.3 4,-0.4 -3,-0.4 -3,-0.1 0.948 120.4 41.6 -76.4 -52.6 -1.1 7.1 -2.3 18 19 A K H <5S+ 0 0 146 -4,-3.2 -2,-0.2 -5,-0.1 -1,-0.1 0.859 130.1 30.2 -64.6 -35.1 -4.7 8.0 -2.9 19 20 A K T <5S+ 0 0 110 -4,-1.9 -3,-0.2 -5,-0.4 -2,-0.2 0.924 138.4 16.9 -91.3 -70.9 -5.5 7.7 0.8 20 21 A Y T +B 31 0A 93 -2,-1.9 3,-1.3 3,-0.9 -22,-0.1 -0.749 57.6 14.5-103.5 151.6 2.3 -8.2 2.7 29 30 A N T 3 S- 0 0 63 -2,-0.3 -1,-0.2 1,-0.3 3,-0.1 0.971 131.7 -63.9 52.8 53.1 0.0 -10.8 4.2 30 31 A R T 3 S+ 0 0 178 -3,-0.3 -24,-0.8 1,-0.1 2,-0.3 0.831 125.9 92.3 39.3 33.1 -2.4 -10.5 1.3 31 32 A H E < S-AB 5 28A 38 -3,-1.3 -3,-0.9 -26,-0.3 2,-0.2 -0.952 86.0 -89.7-147.3 166.3 -2.8 -7.0 2.7 32 33 A b E + B 0 27A 0 -28,-0.9 -30,-1.8 -2,-0.3 -5,-0.2 -0.516 34.1 180.0 -79.6 146.8 -1.2 -3.5 2.3 33 34 A N E + B 0 26A 41 -7,-1.0 -7,-0.5 -32,-0.2 2,-0.1 -0.643 14.2 156.3-147.1 86.0 1.8 -2.4 4.4 34 35 A c - 0 0 8 -9,-0.3 -9,-0.2 -2,-0.2 -10,-0.1 -0.322 34.9-146.2-100.7-171.6 3.2 1.1 3.8 35 36 A Y - 0 0 111 -12,-0.5 -11,-0.1 -11,-0.3 -10,-0.1 0.378 25.3-134.0-133.7 -4.8 5.3 3.4 6.1 36 37 A N + 0 0 82 -13,-0.5 -12,-0.1 1,-0.1 -11,-0.1 0.883 62.3 136.7 50.5 35.3 4.0 6.9 5.2 37 38 A N + 0 0 133 -14,-0.2 -1,-0.1 -13,-0.2 -13,-0.1 0.653 31.3 105.2 -87.5 -14.1 7.7 7.8 5.1 38 39 A d - 0 0 14 -15,-0.2 -15,-0.0 1,-0.1 0, 0.0 -0.542 67.1-146.2 -69.2 114.2 7.3 9.9 1.9 39 40 A P 0 0 112 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.949 360.0 360.0 -45.9 -67.3 7.5 13.6 3.1 40 41 A W 0 0 219 -3,-0.1 -18,-0.1 -18,-0.1 -19,-0.0 -0.162 360.0 360.0 58.2 360.0 5.1 15.1 0.6