==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 11-OCT-04 1WR3 . COMPND 2 MOLECULE: UBIQUITIN-PROTEIN LIGASE NEDD4-2; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR K.KOWALSKI,A.L.MERKEL,G.W.BOOKER . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3126.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 55.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 128 0, 0.0 4,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 46.3 -7.1 -7.4 -17.3 2 2 A S + 0 0 118 1,-0.1 0, 0.0 2,-0.1 0, 0.0 0.945 360.0 44.2 -85.4 -58.3 -9.6 -10.2 -17.7 3 3 A P S S- 0 0 102 0, 0.0 -1,-0.1 0, 0.0 2,-0.0 -0.640 90.6-111.6 -88.1 147.4 -9.5 -12.1 -14.3 4 4 A P - 0 0 121 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 -0.254 41.0 -85.6 -71.7 160.8 -9.4 -10.1 -11.0 5 5 A L S S- 0 0 52 1,-0.2 4,-0.2 4,-0.1 3,-0.1 -0.327 70.1 -64.9 -66.1 152.8 -6.4 -9.9 -8.7 6 6 A P > - 0 0 61 0, 0.0 3,-1.8 0, 0.0 -1,-0.2 0.073 62.2 -93.2 -48.5 143.6 -6.1 -12.8 -6.2 7 7 A P T 3 S+ 0 0 127 0, 0.0 3,-0.1 0, 0.0 16,-0.0 -0.330 112.4 39.3 -59.8 130.3 -8.8 -13.3 -3.5 8 8 A G T 3 S+ 0 0 28 1,-0.4 16,-3.0 -3,-0.1 2,-0.5 0.171 84.0 117.9 111.1 -15.7 -7.8 -11.5 -0.3 9 9 A W E < -A 23 0A 46 -3,-1.8 2,-0.4 14,-0.3 -1,-0.4 -0.765 48.8-162.3 -86.7 123.7 -6.3 -8.5 -2.1 10 10 A E E -A 22 0A 64 12,-2.2 12,-3.0 -2,-0.5 2,-0.8 -0.910 19.8-126.4-115.0 131.8 -8.2 -5.4 -1.1 11 11 A E E +A 21 0A 129 -2,-0.4 2,-0.5 10,-0.2 10,-0.2 -0.656 40.5 170.1 -77.0 108.4 -8.2 -2.1 -3.0 12 12 A K E -A 20 0A 80 8,-3.0 8,-2.4 -2,-0.8 2,-0.2 -0.973 23.9-149.0-128.6 119.7 -7.3 0.5 -0.4 13 13 A V E -A 19 0A 82 -2,-0.5 6,-0.3 6,-0.3 2,-0.1 -0.601 19.7-134.7 -82.6 146.4 -6.4 4.2 -1.1 14 14 A D - 0 0 16 4,-1.0 -1,-0.1 -2,-0.2 5,-0.0 -0.328 31.0 -92.7 -92.1-179.9 -3.9 5.9 1.3 15 15 A N S S+ 0 0 150 1,-0.2 -1,-0.1 2,-0.1 -2,-0.0 0.816 126.6 48.9 -63.9 -32.3 -4.1 9.3 2.9 16 16 A L S S- 0 0 125 2,-0.1 -1,-0.2 0, 0.0 -3,-0.0 0.870 125.8 -98.0 -76.6 -38.9 -2.1 10.9 0.1 17 17 A G S S+ 0 0 49 1,-0.2 2,-0.8 0, 0.0 -2,-0.1 0.601 74.4 136.8 129.6 25.6 -4.3 9.2 -2.6 18 18 A R - 0 0 112 -6,-0.0 2,-1.4 1,-0.0 -4,-1.0 -0.880 46.3-144.0-103.5 106.9 -2.5 6.1 -3.8 19 19 A T E +A 13 0A 79 -2,-0.8 -6,-0.3 -6,-0.3 2,-0.1 -0.566 32.4 176.8 -70.3 93.2 -4.9 3.2 -4.2 20 20 A Y E -A 12 0A 41 -8,-2.4 -8,-3.0 -2,-1.4 2,-0.6 -0.318 31.1-110.9 -91.7 177.9 -2.8 0.3 -3.1 21 21 A Y E -AB 11 30A 37 9,-3.2 9,-1.3 -10,-0.2 2,-0.8 -0.943 22.8-158.5-117.5 112.8 -3.6 -3.3 -2.7 22 22 A V E -AB 10 29A 9 -12,-3.0 -12,-2.2 -2,-0.6 2,-0.4 -0.807 11.2-145.5 -94.0 107.5 -3.7 -4.7 0.8 23 23 A N E > -A 9 0A 19 5,-1.0 4,-1.5 -2,-0.8 -14,-0.3 -0.601 4.5-153.4 -67.9 123.5 -3.3 -8.5 0.8 24 24 A H T 4 S+ 0 0 86 -16,-3.0 -1,-0.2 -2,-0.4 -15,-0.1 0.763 87.5 58.5 -73.2 -23.9 -5.5 -9.7 3.7 25 25 A N T 4 S+ 0 0 144 1,-0.1 -1,-0.2 -17,-0.1 -17,-0.0 0.955 131.0 3.3 -72.5 -52.9 -3.3 -12.9 4.2 26 26 A N T 4 S- 0 0 124 2,-0.1 -2,-0.2 0, 0.0 3,-0.2 0.471 94.3-123.8-112.8 -8.2 0.1 -11.3 4.9 27 27 A R < + 0 0 165 -4,-1.5 2,-1.4 1,-0.2 -3,-0.2 0.843 42.6 173.3 62.7 37.7 -1.0 -7.6 4.8 28 28 A S - 0 0 43 -5,-0.2 2,-1.6 1,-0.1 -5,-1.0 -0.633 15.9-162.0 -76.1 94.2 1.5 -6.8 2.1 29 29 A T E +B 22 0A 78 -2,-1.4 2,-0.3 -7,-0.2 -7,-0.2 -0.583 26.3 155.5 -85.5 80.5 0.4 -3.2 1.5 30 30 A Q E -B 21 0A 26 -2,-1.6 -9,-3.2 -9,-1.3 3,-0.3 -0.781 38.5-153.9-105.9 151.2 2.0 -2.5 -1.9 31 31 A W S S+ 0 0 127 -2,-0.3 -12,-0.1 -11,-0.3 -9,-0.1 -0.049 83.6 74.1-111.0 31.3 0.8 0.1 -4.5 32 32 A H S S- 0 0 142 -11,-0.1 3,-0.4 0, 0.0 -1,-0.1 0.345 100.0-116.5-121.0 4.5 2.2 -1.7 -7.6 33 33 A R - 0 0 110 -3,-0.3 2,-2.3 1,-0.2 -2,-0.1 0.612 23.2 -96.2 67.6 134.4 -0.4 -4.5 -7.8 34 34 A P S S+ 0 0 41 0, 0.0 2,-0.3 0, 0.0 -1,-0.2 -0.290 104.9 44.5 -73.9 54.3 0.5 -8.2 -7.4 35 35 A S 0 0 63 -2,-2.3 -30,-0.0 -3,-0.4 0, 0.0 -0.959 360.0 360.0-172.6 178.5 0.6 -8.5 -11.2 36 36 A L 0 0 202 -2,-0.3 -3,-0.1 0, 0.0 0, 0.0 -0.092 360.0 360.0-101.7 360.0 1.9 -6.9 -14.4