==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=19-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 11-OCT-04 1WR4 . COMPND 2 MOLECULE: UBIQUITIN-PROTEIN LIGASE NEDD4-2; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR K.KOWALSKI,A.L.MERKEL,G.W.BOOKER . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3084.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 58.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 10 27.8 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 121 0, 0.0 9,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 169.3 -9.4 -0.9 -8.4 2 2 A S > - 0 0 56 9,-0.0 3,-0.9 3,-0.0 2,-0.1 -0.929 360.0-142.6-114.5 114.8 -5.9 -0.7 -9.8 3 3 A P T 3 S+ 0 0 129 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.469 79.1 59.1 -68.2 142.0 -4.6 -3.4 -12.3 4 4 A G T 3 + 0 0 71 1,-0.4 0, 0.0 -2,-0.1 0, 0.0 -0.000 70.0 116.9 127.3 -27.4 -1.0 -4.4 -11.8 5 5 A L < - 0 0 40 -3,-0.9 -1,-0.4 1,-0.1 3,-0.1 -0.598 67.6-115.8 -76.4 127.1 -1.1 -5.7 -8.3 6 6 A P > - 0 0 36 0, 0.0 3,-2.5 0, 0.0 2,-0.8 -0.046 45.2 -75.2 -53.4 160.9 -0.3 -9.4 -7.9 7 7 A S T 3 S+ 0 0 124 1,-0.3 3,-0.1 16,-0.1 16,-0.0 -0.487 128.4 28.7 -63.6 103.8 -2.9 -11.9 -6.6 8 8 A G T 3 S+ 0 0 27 -2,-0.8 16,-2.7 1,-0.5 17,-0.9 0.063 95.9 109.5 128.6 -22.1 -2.8 -11.1 -2.9 9 9 A W E < -A 23 0A 33 -3,-2.5 -1,-0.5 14,-0.3 2,-0.3 -0.640 42.4-179.2 -86.4 141.5 -1.9 -7.5 -3.2 10 10 A E E -A 22 0A 85 12,-0.9 12,-2.7 -2,-0.3 2,-0.4 -0.976 18.6-135.4-136.5 150.2 -4.4 -4.8 -2.3 11 11 A E E +A 21 0A 46 -2,-0.3 2,-0.3 10,-0.3 10,-0.2 -0.849 29.6 161.6-106.5 145.5 -4.2 -1.0 -2.4 12 12 A R E -A 20 0A 121 8,-2.9 8,-1.6 -2,-0.4 2,-0.3 -0.851 26.2-125.7-145.3-175.1 -5.5 1.3 0.3 13 13 A K E -A 19 0A 84 -2,-0.3 6,-0.2 6,-0.3 5,-0.1 -0.958 16.6-133.7-139.2 153.0 -5.2 4.8 1.7 14 14 A D - 0 0 43 4,-2.0 2,-0.2 -2,-0.3 5,-0.1 0.126 57.0-108.8 -91.5 19.9 -4.5 6.4 5.0 15 15 A A S S+ 0 0 93 3,-0.3 2,-0.2 1,-0.1 4,-0.1 -0.017 109.3 84.9 78.5 -28.0 -7.4 8.7 4.4 16 16 A K S S- 0 0 140 -2,-0.2 2,-0.3 2,-0.1 -1,-0.1 -0.200 119.1 -89.8-100.5 42.1 -5.0 11.6 3.9 17 17 A G S S+ 0 0 59 1,-0.2 2,-0.2 -2,-0.2 -2,-0.1 -0.014 88.0 132.5 82.9 -31.5 -4.4 10.9 0.2 18 18 A R - 0 0 126 -2,-0.3 -4,-2.0 1,-0.1 2,-0.6 -0.338 44.6-153.6 -62.9 122.8 -1.5 8.6 0.9 19 19 A T E +A 13 0A 57 -6,-0.2 2,-0.3 -2,-0.2 -6,-0.3 -0.875 17.8 175.4-103.8 116.9 -1.8 5.4 -1.0 20 20 A Y E -A 12 0A 35 -8,-1.6 -8,-2.9 -2,-0.6 2,-0.6 -0.879 27.3-125.3-120.3 154.6 -0.1 2.3 0.4 21 21 A Y E -AB 11 30A 18 9,-3.2 9,-3.5 -2,-0.3 2,-0.6 -0.871 21.1-168.4-105.9 121.2 -0.2 -1.3 -0.8 22 22 A V E -AB 10 29A 19 -12,-2.7 -12,-0.9 -2,-0.6 2,-0.6 -0.919 6.7-157.0-115.2 111.0 -1.3 -4.0 1.6 23 23 A N E > -AB 9 28A 5 5,-2.5 5,-1.7 -2,-0.6 -14,-0.3 -0.775 9.2-175.4 -89.9 122.5 -0.7 -7.6 0.6 24 24 A H T 5S+ 0 0 119 -16,-2.7 -1,-0.2 -2,-0.6 -15,-0.1 0.752 80.9 56.9 -90.0 -25.9 -3.0 -9.9 2.5 25 25 A N T 5S+ 0 0 118 -17,-0.9 -1,-0.1 1,-0.2 -16,-0.1 0.833 123.3 25.2 -75.5 -32.5 -1.5 -13.2 1.1 26 26 A N T 5S- 0 0 111 -18,-0.2 -1,-0.2 2,-0.1 -2,-0.2 0.357 105.6-124.7-110.8 -0.5 1.9 -12.3 2.4 27 27 A R T 5 + 0 0 191 -4,-0.2 2,-0.3 1,-0.2 -3,-0.2 0.895 58.4 151.3 58.1 45.9 0.7 -10.0 5.2 28 28 A T E < -B 23 0A 41 -5,-1.7 -5,-2.5 2,-0.0 2,-0.6 -0.831 42.3-156.0-113.1 144.8 2.8 -7.1 4.0 29 29 A T E +B 22 0A 79 -2,-0.3 2,-0.5 -7,-0.2 -7,-0.2 -0.898 27.4 178.1-118.6 100.8 2.3 -3.4 4.2 30 30 A T E -B 21 0A 34 -9,-3.5 -9,-3.2 -2,-0.6 2,-0.9 -0.882 32.0-159.6-116.0 127.2 4.3 -1.8 1.4 31 31 A W S S+ 0 0 155 -2,-0.5 2,-0.3 -11,-0.2 -11,-0.1 -0.473 74.6 76.3 -95.1 59.6 4.6 1.8 0.4 32 32 A T S S- 0 0 92 -2,-0.9 -2,-0.1 -11,-0.1 -11,-0.1 -0.972 92.8 -91.5-167.6 145.3 5.7 0.8 -3.1 33 33 A R - 0 0 197 -2,-0.3 -2,-0.1 1,-0.1 2,-0.1 -0.572 51.1-119.9 -69.3 117.5 4.3 -0.5 -6.3 34 34 A P - 0 0 20 0, 0.0 -1,-0.1 0, 0.0 -25,-0.0 -0.323 27.5-175.1 -62.3 134.6 4.5 -4.3 -6.2 35 35 A I 0 0 170 -30,-0.1 -2,-0.0 -2,-0.1 -30,-0.0 0.547 360.0 360.0-103.1 -12.8 6.6 -6.1 -8.8 36 36 A M 0 0 189 -30,-0.1 -29,-0.0 0, 0.0 -31,-0.0 0.219 360.0 360.0-177.5 360.0 5.6 -9.5 -7.6