==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 30-APR-05 1X37 . COMPND 2 MOLECULE: ATP-DEPENDENT PROTEASE LA 1; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR I.WANG,Y.C.LOU,S.C.LO,Y.L.LEE,S.H.WU,C.CHEN . 95 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 7237.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 70 73.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 3 3.2 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 6.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 11.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 45 47.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 4 4.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 1 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A 0 0 160 0, 0.0 49,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 103.4 -16.7 -15.3 8.2 2 2 A G + 0 0 54 2,-0.0 2,-0.5 0, 0.0 0, 0.0 0.091 360.0 158.1 178.3 49.0 -18.4 -15.5 4.7 3 3 A Y - 0 0 138 4,-0.1 2,-0.3 3,-0.0 3,-0.0 -0.726 19.9-166.1 -88.6 129.4 -16.5 -13.4 2.1 4 4 A T > - 0 0 62 -2,-0.5 4,-2.0 1,-0.1 5,-0.3 -0.821 35.4-110.4-113.4 154.5 -17.2 -14.4 -1.5 5 5 A E H > S+ 0 0 170 -2,-0.3 4,-2.2 1,-0.2 5,-0.2 0.895 119.6 55.8 -48.6 -39.6 -15.3 -13.4 -4.6 6 6 A I H > S+ 0 0 117 2,-0.2 4,-2.9 1,-0.2 -1,-0.2 0.987 105.8 47.8 -59.5 -59.1 -18.4 -11.4 -5.6 7 7 A E H > S+ 0 0 88 1,-0.3 4,-2.2 2,-0.2 5,-0.3 0.959 113.4 47.7 -46.7 -59.5 -18.5 -9.3 -2.4 8 8 A K H X S+ 0 0 33 -4,-2.0 4,-2.0 1,-0.2 5,-0.4 0.898 111.8 52.5 -50.8 -39.6 -14.8 -8.5 -2.6 9 9 A L H X S+ 0 0 78 -4,-2.2 4,-1.9 -5,-0.3 5,-0.3 0.943 107.4 51.2 -64.2 -44.8 -15.4 -7.6 -6.3 10 10 A E H X S+ 0 0 131 -4,-2.9 4,-2.1 2,-0.2 5,-0.2 0.982 121.8 30.7 -57.0 -58.5 -18.3 -5.2 -5.4 11 11 A I H X>S+ 0 0 75 -4,-2.2 4,-2.0 2,-0.2 5,-0.7 0.997 116.5 55.7 -65.2 -63.4 -16.3 -3.3 -2.8 12 12 A V H X5S+ 0 0 6 -4,-2.0 4,-0.6 -5,-0.3 -1,-0.2 0.834 114.9 43.2 -38.8 -38.0 -12.8 -3.6 -4.3 13 13 A K H <5S+ 0 0 78 -4,-1.9 4,-0.3 -5,-0.4 -1,-0.3 0.887 123.6 33.8 -80.6 -39.2 -14.3 -2.1 -7.5 14 14 A D H ><5S+ 0 0 102 -4,-2.1 3,-1.6 -3,-0.5 5,-0.2 0.959 116.9 49.8 -81.0 -56.0 -16.3 0.7 -5.8 15 15 A H H 3X>S+ 0 0 31 -4,-2.0 4,-1.7 1,-0.3 5,-0.6 0.865 92.4 77.7 -53.1 -39.0 -14.2 1.6 -2.8 16 16 A L T 3<5S+ 0 0 113 -3,-1.6 4,-1.3 -4,-0.3 -1,-0.2 0.974 127.2 28.1 -80.6 -58.1 -12.4 5.4 -6.1 18 18 A P H >5S+ 0 0 74 0, 0.0 4,-2.4 0, 0.0 5,-0.2 0.951 121.9 50.5 -69.9 -50.1 -13.9 6.9 -2.9 19 19 A K H >X>S+ 0 0 75 -4,-1.7 3,-1.5 2,-0.2 4,-1.0 0.972 117.2 35.8 -52.2 -79.4 -11.6 5.2 -0.3 20 20 A Q H 3>XS+ 0 0 2 -5,-0.6 4,-2.4 1,-0.3 5,-0.7 0.909 116.4 56.6 -41.3 -51.8 -8.2 5.9 -1.8 21 21 A I H 3X5S+ 0 0 60 -4,-1.3 4,-2.0 -5,-0.4 -1,-0.3 0.885 111.8 44.6 -51.6 -39.0 -9.5 9.4 -2.9 22 22 A K H < - 0 0 177 45,-1.2 4,-1.4 1,-0.1 -1,-0.0 -0.784 17.8-117.7-120.4 166.3 -7.1 2.2 -13.6 35 35 A D H > S+ 0 0 78 -2,-0.3 4,-2.3 1,-0.2 5,-0.4 0.953 111.5 61.9 -69.8 -47.2 -9.4 -0.8 -13.1 36 36 A Q H > S+ 0 0 130 1,-0.2 4,-2.6 2,-0.2 -1,-0.2 0.882 104.7 52.1 -46.2 -39.4 -7.1 -3.2 -14.9 37 37 A A H > S+ 0 0 3 2,-0.2 4,-2.1 1,-0.2 3,-0.4 1.000 105.7 48.6 -63.1 -68.8 -4.5 -2.4 -12.2 38 38 A I H X S+ 0 0 7 -4,-1.4 4,-1.2 1,-0.3 5,-0.3 0.871 118.3 44.5 -39.7 -41.7 -6.6 -3.1 -9.1 39 39 A L H X S+ 0 0 66 -4,-2.3 4,-1.8 2,-0.1 -1,-0.3 0.909 114.7 48.5 -73.2 -39.8 -7.5 -6.4 -10.8 40 40 A D H X S+ 0 0 9 -4,-2.6 4,-2.7 -3,-0.4 5,-0.3 0.998 111.9 46.3 -63.8 -63.3 -3.9 -7.1 -12.0 41 41 A I H >X S+ 0 0 3 -4,-2.1 4,-2.9 1,-0.3 3,-1.2 0.946 117.8 41.5 -43.0 -71.8 -2.2 -6.5 -8.6 42 42 A I H 3X S+ 0 0 34 -4,-1.2 4,-1.8 -5,-0.3 -1,-0.3 0.885 112.8 57.7 -46.2 -39.9 -4.8 -8.6 -6.6 43 43 A R H 3< S+ 0 0 139 -4,-1.8 -1,-0.3 -5,-0.3 -2,-0.2 0.908 111.8 40.2 -60.9 -39.3 -4.7 -11.1 -9.4 44 44 A Y H << S+ 0 0 53 -4,-2.7 49,-0.7 -3,-1.2 -2,-0.2 0.899 131.1 28.0 -77.2 -39.6 -0.9 -11.5 -9.0 45 45 A Y H < + 0 0 25 -4,-2.9 -3,-0.2 -5,-0.3 -2,-0.2 0.946 64.7 160.1 -85.8 -58.9 -1.0 -11.4 -5.1 46 46 A T < + 0 0 82 -4,-1.8 2,-0.5 -5,-0.3 -3,-0.1 0.685 38.9 133.6 46.7 8.9 -4.5 -12.8 -4.4 47 47 A R + 0 0 152 -5,-0.1 2,-0.3 2,-0.0 -1,-0.2 -0.774 26.5 102.0 -91.9 125.3 -2.8 -13.3 -1.0 48 48 A E - 0 0 59 -2,-0.5 3,-0.1 -3,-0.1 4,-0.0 -0.952 61.9-130.2 175.2 166.8 -4.9 -12.2 2.0 49 49 A A S S- 0 0 102 1,-0.4 2,-0.2 -2,-0.3 3,-0.1 -0.100 88.1 -9.7-126.2 34.9 -7.1 -13.3 4.9 50 50 A G S > S- 0 0 17 1,-0.1 4,-1.7 2,-0.1 -1,-0.4 -0.704 78.0 -90.5 149.5 158.1 -10.0 -10.9 4.3 51 51 A V H > S+ 0 0 17 1,-0.2 4,-2.7 -2,-0.2 5,-0.5 0.932 115.8 70.2 -62.8 -43.0 -11.0 -7.8 2.3 52 52 A R H > S+ 0 0 159 1,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.918 104.5 42.0 -39.6 -54.0 -9.7 -5.5 5.0 53 53 A S H > S+ 0 0 55 -3,-0.3 4,-2.5 2,-0.2 -1,-0.2 0.968 112.0 54.8 -61.2 -50.3 -6.1 -6.6 4.1 54 54 A L H >X S+ 0 0 5 -4,-1.7 4,-2.2 1,-0.3 3,-0.9 0.966 108.2 47.7 -47.1 -61.9 -6.9 -6.5 0.4 55 55 A E H 3X S+ 0 0 33 -4,-2.7 4,-3.1 1,-0.3 5,-0.3 0.899 109.6 56.1 -47.4 -39.3 -8.0 -2.8 0.7 56 56 A R H 3X S+ 0 0 165 -4,-1.9 4,-2.6 -5,-0.5 -1,-0.3 0.918 104.6 51.7 -62.1 -39.8 -4.8 -2.3 2.7 57 57 A Q H S+ 0 0 16 -4,-3.1 4,-2.3 -5,-0.2 5,-0.6 0.912 107.4 58.8 -54.2 -39.0 -4.1 1.7 -0.3 60 60 A A H X5S+ 0 0 42 -4,-2.6 4,-2.3 -5,-0.3 5,-0.2 0.971 111.3 37.9 -56.2 -54.8 -0.4 0.6 0.1 61 61 A I H X5S+ 0 0 15 -4,-2.2 4,-1.9 3,-0.2 -2,-0.2 0.945 117.3 53.6 -63.7 -44.6 0.3 1.0 -3.6 62 62 A C H >X5S+ 0 0 5 -4,-3.1 4,-1.8 -5,-0.2 3,-0.9 0.986 119.2 30.2 -53.8 -71.6 -1.9 4.1 -3.8 63 63 A R H 3X5S+ 0 0 127 -4,-2.3 4,-2.7 1,-0.3 5,-0.3 0.956 111.5 66.0 -56.1 -48.4 -0.3 6.2 -1.0 64 64 A K H 3X< S+ 0 0 4 -4,-1.8 3,-2.5 1,-0.3 -2,-0.2 0.923 96.6 61.0 -55.9 -41.8 1.4 9.6 -3.0 67 67 A K H >< S+ 0 0 130 -4,-2.7 3,-1.0 1,-0.3 -1,-0.3 0.909 88.7 70.4 -52.9 -39.9 4.8 9.7 -1.2 68 68 A A G X< + 0 0 51 -4,-0.8 3,-0.9 -3,-0.6 -1,-0.3 0.555 61.4 118.1 -57.1 0.9 6.5 10.1 -4.6 69 69 A I G < + 0 0 81 -3,-2.5 -1,-0.3 1,-0.3 -2,-0.1 0.685 57.5 79.4 -45.1 -9.9 4.8 13.6 -4.3 70 70 A V G < S+ 0 0 131 -3,-1.0 -1,-0.3 -4,-0.1 -2,-0.1 0.023 70.9 119.2 -89.2 31.4 8.5 14.6 -4.4 71 71 A A S < S- 0 0 54 -3,-0.9 -2,-0.0 3,-0.1 4,-0.0 -0.049 84.2 -84.7 -81.5-168.5 8.5 14.1 -8.2 72 72 A E S S- 0 0 145 1,-0.1 -1,-0.0 2,-0.0 -3,-0.0 1.000 83.1 -66.4 -64.1 -68.5 9.3 16.8 -10.8 73 73 A E S S+ 0 0 153 2,-0.1 2,-0.7 -3,-0.0 -1,-0.1 0.279 82.0 141.4-168.9 5.9 5.8 18.4 -11.1 74 74 A R - 0 0 141 1,-0.0 -3,-0.1 3,-0.0 2,-0.0 -0.445 40.0-154.1 -63.3 107.9 3.6 15.7 -12.7 75 75 A K + 0 0 108 -2,-0.7 3,-0.1 2,-0.1 -45,-0.1 -0.331 62.8 35.5 -79.1 167.2 0.3 16.1 -10.8 76 76 A R S S- 0 0 130 -47,-0.4 2,-0.6 1,-0.1 -46,-0.2 0.858 85.3-122.6 55.7 105.5 -2.2 13.2 -10.4 77 77 A I - 0 0 21 2,-0.0 -45,-2.1 -15,-0.0 2,-0.6 -0.675 22.5-147.1 -81.7 118.0 -0.2 10.0 -10.0 78 78 A T E -a 32 0A 66 -2,-0.6 2,-0.5 -47,-0.2 -45,-0.3 -0.730 13.6-171.9 -87.5 123.3 -1.4 7.6 -12.8 79 79 A V E +a 33 0A 4 -47,-1.5 -45,-1.2 -2,-0.6 -42,-0.1 -0.509 20.4 163.7-111.9 65.6 -1.3 3.9 -11.6 80 80 A T > - 0 0 54 -2,-0.5 4,-1.6 -47,-0.2 -46,-0.1 0.105 60.9 -83.7 -66.2-168.9 -1.9 2.1 -14.9 81 81 A E T 4 S+ 0 0 92 2,-0.2 4,-0.5 1,-0.1 -1,-0.1 0.804 131.2 47.8 -71.5 -24.8 -1.2 -1.6 -15.2 82 82 A K T >> S+ 0 0 157 2,-0.2 3,-2.5 1,-0.1 4,-1.1 0.976 110.3 45.8 -78.8 -64.1 2.4 -0.7 -16.0 83 83 A N H 3> S+ 0 0 49 1,-0.3 4,-2.8 2,-0.2 5,-0.3 0.892 98.0 76.8 -45.9 -39.4 3.2 1.8 -13.2 84 84 A L H 3X S+ 0 0 11 -4,-1.6 4,-2.5 1,-0.2 5,-0.4 0.877 97.6 45.6 -40.5 -41.2 1.5 -0.8 -10.9 85 85 A Q H <> S+ 0 0 106 -3,-2.5 4,-3.5 -4,-0.5 -1,-0.2 0.966 108.0 54.1 -70.5 -50.7 4.8 -2.7 -11.2 86 86 A D H < S+ 0 0 122 -4,-1.1 -2,-0.2 2,-0.2 -1,-0.2 0.919 116.5 40.7 -50.2 -43.1 7.1 0.3 -10.7 87 87 A F H < S+ 0 0 30 -4,-2.8 -2,-0.2 1,-0.1 -1,-0.2 0.992 125.6 33.0 -70.4 -61.6 5.2 1.0 -7.4 88 88 A I H < S- 0 0 39 -4,-2.5 -3,-0.2 -5,-0.3 -2,-0.2 0.970 90.8-170.4 -60.3 -51.9 4.8 -2.6 -6.2 89 89 A G < + 0 0 39 -4,-3.5 -3,-0.1 -5,-0.4 -4,-0.1 0.786 53.9 20.8 61.4 112.9 8.2 -3.7 -7.7 90 90 A K S S- 0 0 174 2,-0.0 2,-0.2 -5,-0.0 0, 0.0 0.124 74.3-147.9 80.3 157.0 8.6 -7.5 -7.5 91 91 A R - 0 0 61 1,-0.1 3,-0.1 -47,-0.0 -46,-0.1 -0.719 14.8-126.1-143.5-165.1 5.7 -10.0 -7.1 92 92 A I S S+ 0 0 77 1,-0.3 2,-0.6 -2,-0.2 -1,-0.1 0.707 90.0 50.2-117.6 -61.3 4.9 -13.4 -5.6 93 93 A F S S- 0 0 95 -49,-0.7 2,-1.2 1,-0.1 -1,-0.3 -0.710 71.9-152.4 -85.0 118.4 3.5 -15.7 -8.3 94 94 A R 0 0 222 -2,-0.6 -1,-0.1 1,-0.2 -50,-0.0 -0.708 360.0 360.0 -92.5 93.9 5.7 -15.7 -11.3 95 95 A Y 0 0 242 -2,-1.2 -1,-0.2 0, 0.0 -51,-0.0 0.889 360.0 360.0 46.0 360.0 3.4 -16.6 -14.2