==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER CELL CYCLE 30-JAN-05 1YP8 . COMPND 2 MOLECULE: TRICYCLON A; . SOURCE 2 ORGANISM_SCIENTIFIC: VIOLA TRICOLOR; . AUTHOR J.P.MULVENNA,L.SANDO,D.J.CRAIK . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2644.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 57.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 27.3 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 14 0, 0.0 2,-2.2 0, 0.0 22,-0.2 0.000 360.0 360.0 360.0 135.3 0.9 -0.4 -6.0 2 2 A G + 0 0 92 31,-0.4 22,-0.1 20,-0.1 31,-0.0 -0.217 360.0 142.3 -77.7 48.3 -1.7 -2.6 -7.7 3 3 A E - 0 0 29 -2,-2.2 7,-0.1 20,-0.4 30,-0.0 -0.050 51.2-141.8 -80.4-176.1 -2.6 -3.8 -4.2 4 4 A S + 0 0 89 5,-0.1 2,-3.0 18,-0.1 3,-0.4 -0.384 21.3 171.8-150.6 63.2 -5.9 -4.7 -2.7 5 5 A b + 0 0 3 1,-0.2 5,-0.1 3,-0.1 -2,-0.0 -0.281 21.2 150.6 -72.8 57.0 -6.1 -3.5 0.9 6 6 A F S S+ 0 0 168 -2,-3.0 -1,-0.2 1,-0.2 4,-0.1 0.895 79.8 32.9 -57.5 -40.4 -9.8 -4.4 1.1 7 7 A L S S- 0 0 154 -3,-0.4 -1,-0.2 2,-0.3 -2,-0.1 0.923 127.0 -95.7 -80.9 -49.3 -9.4 -5.1 4.8 8 8 A G S S+ 0 0 38 1,-0.6 9,-0.4 -4,-0.1 2,-0.3 -0.048 95.9 88.2 160.1 -39.7 -6.8 -2.5 5.4 9 9 A T - 0 0 112 -5,-0.1 -1,-0.6 7,-0.1 -2,-0.3 -0.628 64.4-142.0 -87.0 142.5 -3.4 -4.2 5.2 10 10 A c - 0 0 32 5,-0.3 4,-0.1 -2,-0.3 -1,-0.0 -0.614 6.2-143.0-100.0 162.4 -1.6 -4.6 1.9 11 11 A Y S S+ 0 0 201 -2,-0.2 2,-0.4 2,-0.1 -1,-0.1 0.898 78.7 79.9 -89.6 -50.8 0.4 -7.6 0.7 12 12 A T S > S- 0 0 78 1,-0.1 3,-1.8 2,-0.1 -2,-0.1 -0.452 88.6-118.5 -64.9 118.7 3.3 -5.9 -1.1 13 13 A K T 3 S+ 0 0 184 -2,-0.4 3,-0.1 1,-0.3 -1,-0.1 -0.318 97.8 23.8 -59.9 133.1 5.9 -4.7 1.4 14 14 A G T 3 S+ 0 0 24 1,-0.2 12,-2.1 11,-0.1 2,-0.7 0.011 93.5 113.3 99.0 -27.3 6.3 -1.0 1.3 15 15 A a E < -A 25 0A 8 -3,-1.8 2,-0.5 10,-0.3 10,-0.3 -0.703 51.1-164.7 -83.2 112.9 2.9 -0.4 -0.1 16 16 A S E -A 24 0A 75 8,-2.9 8,-2.9 -2,-0.7 2,-0.7 -0.857 27.7-111.7-102.2 130.1 0.8 1.4 2.5 17 17 A b E -A 23 0A 46 -2,-0.5 6,-0.3 -9,-0.4 4,-0.1 -0.446 38.6-146.4 -62.8 104.9 -3.0 1.5 2.1 18 18 A G E >> -A 22 0A 21 4,-2.6 3,-1.4 -2,-0.7 4,-1.2 -0.370 27.3 -99.5 -73.5 154.8 -3.6 5.2 1.4 19 19 A E T 34 S+ 0 0 199 1,-0.3 2,-0.1 2,-0.2 -1,-0.1 0.800 123.6 64.1 -40.3 -42.8 -6.8 7.0 2.5 20 20 A W T 34 S- 0 0 162 2,-0.2 -1,-0.3 1,-0.1 -2,-0.1 0.115 126.4-103.7 -73.9 25.7 -8.3 6.6 -1.0 21 21 A K T <4 S+ 0 0 102 -3,-1.4 2,-0.4 1,-0.2 -2,-0.2 0.860 86.6 122.4 52.2 44.8 -8.1 2.8 -0.2 22 22 A L E < -A 18 0A 80 -4,-1.2 -4,-2.6 -6,-0.1 2,-0.3 -0.963 60.4-130.7-139.6 119.3 -5.0 2.4 -2.4 23 23 A c E -A 17 0A 2 -2,-0.4 2,-0.5 -6,-0.3 -20,-0.4 -0.512 21.9-164.5 -71.0 127.6 -1.6 1.1 -1.3 24 24 A Y E -A 16 0A 70 -8,-2.9 -8,-2.9 -2,-0.3 2,-0.3 -0.953 17.9-127.0-116.6 127.4 1.3 3.2 -2.2 25 25 A G E +AB 15 32A 0 7,-3.1 7,-2.1 -2,-0.5 -10,-0.3 -0.562 27.3 175.0 -75.6 130.5 4.8 1.8 -2.1 26 26 A T E > + B 0 31A 69 -12,-2.1 2,-0.5 -2,-0.3 3,-0.5 -0.546 16.1 158.9-133.5 64.5 7.3 3.9 -0.1 27 27 A N E > S- B 0 30A 65 3,-1.3 3,-2.1 1,-0.2 -2,-0.0 -0.812 74.6 -10.6 -95.5 124.3 10.5 1.8 -0.1 28 28 A G T 3 S- 0 0 83 -2,-0.5 -1,-0.2 1,-0.3 3,-0.1 0.846 131.0 -55.3 58.5 34.8 13.7 3.6 0.6 29 29 A G T < S+ 0 0 65 -3,-0.5 2,-0.6 1,-0.3 -1,-0.3 0.445 108.7 132.7 78.0 -0.4 11.9 6.9 0.2 30 30 A T E < -B 27 0A 81 -3,-2.1 -3,-1.3 2,-0.0 2,-0.5 -0.760 42.6-157.6 -89.2 121.1 10.7 5.8 -3.2 31 31 A I E +B 26 0A 118 -2,-0.6 2,-0.3 -5,-0.2 -5,-0.2 -0.849 23.5 152.9-102.0 131.4 7.0 6.4 -3.7 32 32 A F E B 25 0A 85 -7,-2.1 -7,-3.1 -2,-0.5 -5,-0.0 -0.979 360.0 360.0-156.7 142.3 5.1 4.4 -6.3 33 33 A D 0 0 95 -2,-0.3 -31,-0.4 -9,-0.2 -9,-0.2 -0.434 360.0 360.0 -68.3 360.0 1.5 3.3 -6.8