==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PLANT PROTEIN, ANTIBIOTIC 12-MAY-05 1ZNU . COMPND 2 MOLECULE: KALATA B1; . SOURCE 2 ORGANISM_SCIENTIFIC: OLDENLANDIA AFFINIS; . AUTHOR Z.O.SHENKAREV,K.D.NADEZHDIN,V.A.SOBOL,A.G.SOBOL,L.SKJELDAL, . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2058.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 14 48.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 31.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 2 6.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 13.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A a 0 0 27 0, 0.0 22,-0.1 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 -47.8 3.6 -3.5 -2.0 2 2 A G + 0 0 74 1,-0.4 2,-0.1 20,-0.3 21,-0.0 0.182 360.0 110.9 90.9 -15.8 1.9 -4.3 -5.3 3 3 A E - 0 0 58 18,-0.0 19,-2.5 2,-0.0 2,-0.4 -0.465 62.9-131.8 -88.8 162.7 -1.4 -4.0 -3.7 4 4 A T B -A 21 0A 81 17,-0.3 3,-0.3 -2,-0.1 17,-0.3 -0.958 8.4-159.8-120.4 135.0 -4.0 -1.3 -4.3 5 5 A b + 0 0 0 15,-0.8 3,-0.5 -2,-0.4 14,-0.2 -0.356 40.2 143.0-105.1 49.1 -5.8 0.7 -1.6 6 6 A V S S+ 0 0 91 1,-0.3 -1,-0.2 -2,-0.2 15,-0.1 0.747 76.8 51.4 -59.1 -23.4 -8.6 1.7 -3.9 7 7 A G S S- 0 0 85 2,-0.4 -1,-0.3 -3,-0.3 -2,-0.1 0.782 128.9 -98.1 -82.9 -32.7 -10.8 1.3 -0.9 8 8 A G S S+ 0 0 34 1,-0.5 2,-0.3 -3,-0.5 9,-0.2 0.448 94.2 68.8 125.6 10.8 -8.6 3.4 1.3 9 9 A T - 0 0 109 -5,-0.1 -1,-0.5 7,-0.1 2,-0.4 -0.954 68.8-125.1-150.2 165.4 -6.6 0.8 3.1 10 10 A c - 0 0 21 5,-0.3 4,-0.1 -2,-0.3 7,-0.1 -0.928 5.9-165.1-118.5 141.9 -3.9 -1.8 2.5 11 11 A N + 0 0 140 -2,-0.4 -1,-0.1 -7,-0.1 3,-0.1 0.832 67.8 90.3 -89.8 -39.9 -4.2 -5.5 3.3 12 12 A T S > S- 0 0 51 1,-0.1 3,-1.6 2,-0.1 2,-0.2 -0.309 92.9 -97.1 -62.3 143.0 -0.5 -6.3 3.0 13 13 A P T 3 S+ 0 0 111 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.403 103.4 5.1 -74.9 132.1 1.4 -5.9 6.2 14 14 A G T 3 S+ 0 0 63 1,-0.3 11,-0.8 -2,-0.2 2,-0.5 0.605 97.5 136.3 74.4 12.5 3.2 -2.6 6.8 15 15 A a E < -B 24 0A 17 -3,-1.6 -5,-0.3 9,-0.2 -1,-0.3 -0.826 43.9-148.6 -96.7 127.6 1.7 -1.3 3.6 16 16 A T E -B 23 0A 70 7,-2.4 7,-2.2 -2,-0.5 2,-1.4 -0.643 25.9-103.5 -95.2 152.9 0.3 2.2 3.7 17 17 A b E +B 22 0A 54 -2,-0.2 2,-0.8 5,-0.2 5,-0.2 -0.624 43.7 170.1 -77.7 93.9 -2.7 3.4 1.6 18 18 A S E > -B 21 0A 45 -2,-1.4 3,-1.3 3,-0.8 -1,-0.1 -0.571 48.1-105.5-100.4 65.9 -0.9 5.4 -1.1 19 19 A W T 3 S+ 0 0 157 -2,-0.8 -13,-0.1 1,-0.4 3,-0.0 0.113 97.9 14.3 -36.9 147.9 -4.1 5.8 -3.2 20 20 A P T 3 S+ 0 0 73 0, 0.0 -15,-0.8 0, 0.0 -1,-0.4 -0.930 138.8 25.4 -75.0 -12.1 -4.9 4.6 -5.5 21 21 A V E < S-AB 4 18A 57 -3,-1.3 -3,-0.8 -17,-0.3 -17,-0.3 -0.300 82.9-103.4 -99.3-179.5 -2.1 2.1 -4.9 22 22 A c E - B 0 17A 1 -19,-2.5 -20,-0.3 -5,-0.2 2,-0.3 -0.553 30.5-159.9-101.3 168.4 -0.4 0.8 -1.8 23 23 A T E - B 0 16A 12 -7,-2.2 -7,-2.4 -2,-0.2 2,-0.4 -0.937 11.8-138.6-144.9 164.9 3.1 1.7 -0.5 24 24 A R E > S-CB 27 15A 129 3,-2.5 3,-1.1 -2,-0.3 -9,-0.2 -0.970 84.3 -21.3-133.9 117.5 5.7 0.4 1.8 25 25 A N T 3 S- 0 0 141 -11,-0.8 -10,-0.1 -2,-0.4 -1,-0.1 0.748 129.9 -52.3 57.7 23.4 7.7 2.6 4.2 26 26 A G T 3 S+ 0 0 54 1,-0.2 -1,-0.3 -10,-0.0 -11,-0.1 0.723 124.3 104.1 84.0 24.6 6.7 5.3 1.8 27 27 A L B < S-C 24 0A 108 -3,-1.1 -3,-2.5 0, 0.0 2,-1.5 -0.989 79.0-115.5-143.7 130.3 8.0 3.4 -1.2 28 28 A P 0 0 100 0, 0.0 -5,-0.2 0, 0.0 -3,-0.0 -0.451 360.0 360.0 -75.0 89.3 5.8 1.6 -3.7 29 29 A V 0 0 95 -2,-1.5 -6,-0.1 -26,-0.0 -4,-0.0 -0.083 360.0 360.0-143.3 360.0 6.8 -2.0 -3.3