==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=21-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 17-JUN-96 1ZWE . COMPND 2 MOLECULE: PARATHYROID HORMONE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR P.ROESCH,U.C.MARX . 34 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3733.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 47.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 32.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 197 0, 0.0 2,-0.8 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-168.1 -17.8 7.2 5.5 2 2 A I + 0 0 136 1,-0.0 2,-0.2 2,-0.0 3,-0.1 -0.832 360.0 141.8-107.6 97.1 -16.7 4.9 2.6 3 3 A Q + 0 0 153 -2,-0.8 -1,-0.0 1,-0.1 3,-0.0 -0.654 28.5 106.6-135.9 78.2 -15.9 1.4 4.0 4 4 A L + 0 0 128 -2,-0.2 2,-0.3 2,-0.0 -1,-0.1 -0.093 56.5 85.7-146.4 40.5 -17.1 -1.3 1.6 5 5 A M - 0 0 123 -3,-0.1 2,-0.6 0, 0.0 3,-0.3 -0.999 63.6-135.3-145.8 140.5 -13.9 -2.8 -0.1 6 6 A H S S- 0 0 179 -2,-0.3 8,-0.0 1,-0.2 -3,-0.0 -0.855 86.3 -13.9-100.2 118.7 -11.5 -5.6 0.9 7 7 A N S S+ 0 0 102 -2,-0.6 -1,-0.2 10,-0.0 10,-0.2 0.983 80.9 153.2 56.7 64.2 -7.7 -4.7 0.5 8 8 A L - 0 0 78 -3,-0.3 9,-0.4 9,-0.1 8,-0.2 0.948 47.1-132.0 -85.6 -59.2 -8.2 -1.6 -1.7 9 9 A G - 0 0 4 7,-0.1 2,-2.3 8,-0.1 4,-0.1 0.333 23.3-119.9 121.8 -5.2 -5.0 0.5 -0.9 10 10 A K S S+ 0 0 176 1,-0.2 -1,-0.0 2,-0.2 7,-0.0 -0.430 109.6 25.9 72.4 -73.3 -6.6 4.0 -0.2 11 11 A H S S+ 0 0 158 -2,-2.3 2,-0.3 2,-0.1 -1,-0.2 -0.135 130.9 36.6-110.8 35.5 -4.6 5.8 -3.0 12 12 A L S S- 0 0 39 4,-0.0 -2,-0.2 0, 0.0 2,-0.1 -0.969 81.2 -99.9-168.6 175.5 -4.2 2.6 -5.2 13 13 A N > - 0 0 62 -2,-0.3 4,-2.7 -4,-0.1 3,-0.1 -0.356 44.8 -89.5-101.5-175.8 -6.0 -0.7 -6.4 14 14 A S H > S+ 0 0 75 2,-0.2 4,-2.1 1,-0.2 5,-0.2 0.938 126.9 51.3 -62.1 -46.8 -5.7 -4.4 -5.2 15 15 A M H > S+ 0 0 159 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.814 116.0 43.3 -62.6 -25.9 -2.8 -5.2 -7.7 16 16 A E H > S+ 0 0 101 -8,-0.2 4,-3.0 2,-0.1 3,-0.4 0.870 108.0 60.8 -83.3 -39.1 -1.0 -2.1 -6.4 17 17 A R H X S+ 0 0 63 -4,-2.7 4,-3.6 -9,-0.4 5,-0.4 0.926 97.8 56.5 -52.3 -52.9 -1.9 -3.1 -2.7 18 18 A V H X S+ 0 0 92 -4,-2.1 4,-0.9 1,-0.2 -1,-0.2 0.888 118.2 34.1 -48.8 -43.3 -0.0 -6.4 -2.8 19 19 A E H X S+ 0 0 82 -4,-0.6 4,-3.0 -3,-0.4 5,-0.3 0.826 113.8 61.3 -82.4 -32.4 3.2 -4.5 -3.8 20 20 A W H X S+ 0 0 84 -4,-3.0 4,-2.4 1,-0.2 -2,-0.2 0.966 107.2 44.2 -58.5 -50.5 2.2 -1.5 -1.6 21 21 A L H X S+ 0 0 54 -4,-3.6 4,-1.0 2,-0.2 -1,-0.2 0.859 110.8 55.2 -66.0 -30.9 2.3 -3.8 1.4 22 22 A R H >X S+ 0 0 132 -4,-0.9 4,-1.7 -5,-0.4 3,-0.8 0.971 112.5 41.7 -65.1 -49.7 5.6 -5.3 0.2 23 23 A K H 3X S+ 0 0 80 -4,-3.0 4,-1.7 1,-0.2 5,-0.3 0.845 100.8 74.8 -65.0 -31.6 7.2 -1.8 0.0 24 24 A K H 3< S+ 0 0 115 -4,-2.4 4,-0.3 -5,-0.3 -1,-0.2 0.871 108.1 31.6 -48.8 -39.6 5.4 -1.0 3.4 25 25 A L H << S+ 0 0 129 -4,-1.0 3,-0.4 -3,-0.8 4,-0.4 0.835 121.6 48.9 -88.7 -36.6 8.1 -3.2 5.1 26 26 A Q H < S+ 0 0 100 -4,-1.7 -2,-0.2 1,-0.2 -3,-0.2 0.481 111.2 51.8 -82.1 -1.1 11.0 -2.4 2.7 27 27 A D S >< S+ 0 0 45 -4,-1.7 3,-1.8 -5,-0.2 -1,-0.2 0.546 83.5 84.1-110.2 -11.7 10.4 1.4 2.9 28 28 A V T 3 S+ 0 0 122 -3,-0.4 -2,-0.1 -4,-0.3 3,-0.1 0.903 102.7 36.5 -59.9 -38.2 10.4 1.9 6.8 29 29 A H T 3 S- 0 0 176 -4,-0.4 -1,-0.3 1,-0.3 -2,-0.1 -0.119 133.1 -91.1-103.1 34.8 14.2 2.1 6.7 30 30 A N < - 0 0 74 -3,-1.8 -1,-0.3 1,-0.1 -2,-0.1 0.350 25.5-121.4 70.2 153.1 14.2 4.0 3.3 31 31 A F - 0 0 93 2,-0.3 -1,-0.1 -4,-0.2 -4,-0.1 -0.498 63.6 -79.3-125.7 60.0 14.4 2.4 -0.2 32 32 A V S S+ 0 0 153 1,-0.1 2,-0.3 -2,-0.1 -2,-0.1 0.871 103.6 114.6 44.2 46.1 17.6 4.1 -1.6 33 33 A A 0 0 41 0, 0.0 -2,-0.3 0, 0.0 -1,-0.1 -0.828 360.0 360.0-147.2 103.4 15.5 7.2 -2.4 34 34 A L 0 0 228 -2,-0.3 -2,-0.0 -4,-0.1 -4,-0.0 -0.450 360.0 360.0 74.1 360.0 16.2 10.6 -0.6