data_6656

#######################
#  Entry information  #
#######################

save_entry_information
   _Saveframe_category      entry_information

   _Entry_title            
;
On the Importance of Carbohydrate-Aromatic Interactions for the Molecular 
Recognition of Chitooligosaccharides by Hevein Domains. NMR Studies of the 
Structure and Binding Affinity of AcAMP2-Like Peptides with non Natural Napthyl 
and Fluoroaromatic Residues
;
   _BMRB_accession_number   6656
   _BMRB_flat_file_name     bmr6656.str
   _Entry_type              original
   _Submission_date         2005-06-06
   _Accession_date          2005-06-06
   _Entry_origination       author
   _NMR_STAR_version        2.1.1
   _Experimental_method     NMR
   _Details                 .

   loop_
      _Author_ordinal
      _Author_family_name
      _Author_given_name
      _Author_middle_initials
      _Author_family_title

       1 Chavez          M.       Isabel . 
       2 Andreu          Cecilia  .      . 
       3 Vidal           Paloma   .      . 
       4 Freire          Felix    .      . 
       5 Aboitiz         Nuria    .      . 
       6 Groves          Patrick  .      . 
       7 Asensio         Juan     L.     . 
       8 Asensio         Gregorio .      . 
       9 Muraki          Michiro  .      . 
      10 Canada          F.       Javier . 
      11 Jimenez-Barbero Jesus    .      . 

   stop_

   loop_
      _Saveframe_category_type
      _Saveframe_category_type_count

      assigned_chemical_shifts 1 

   stop_

   loop_
      _Data_type
      _Data_type_count

      "1H chemical shifts" 142 

   stop_

   loop_
      _Revision_date
      _Revision_keyword
      _Revision_author
      _Revision_detail

      2008-07-31 update   BMRB   'updating non-standard residues' 
      2005-12-22 original author 'Original release'               

   stop_

   loop_
      _Related_BMRB_accession_number
      _Relationship

      6591  AcAMP2F18Pff/Y20Pff   
      6637 'AcAMP2F18Nalb mutant' 
      6639 'AcAMP2F18W mutant'    
      6647  AcAMP2F18Wb           
      6657 'AcAMP2F18Nal mutant'  

   stop_

save_


#############################
#  Citation for this entry  #
#############################

save_entry_citation
   _Saveframe_category           entry_citation

   _Citation_full                .
   _Citation_title              
;
On the Importance of Carbohydrate-Aromatic Interactions for the Molecular 
Recognition of Chitooligosaccharides by Hevein Domains. NMR Studies of the 
Structure and Binding Affinity of AcAMP2-Like Peptides with non Natural Napthyl 
and Fluoroaromatic Residues
;
   _Citation_status              published
   _Citation_type                journal
   _CAS_abstract_code            .
   _MEDLINE_UI_code              .
   _PubMed_ID                    16220560

   loop_
      _Author_ordinal
      _Author_family_name
      _Author_given_name
      _Author_middle_initials
      _Author_family_title

       1 Chavez          M.       Isabel . 
       2 Andreu          Cecilia  .      . 
       3 Vidal           Paloma   .      . 
       4 Aboitiz         Nuria    .      . 
       5 Freire          Felix    .      . 
       6 Groves          Patrick  .      . 
       7 Asensio         Juan     L.     . 
       8 Asensio         Gregorio .      . 
       9 Muraki          Michiro  .      . 
      10 Canada          F.       Javier . 
      11 Jimenez-Barbero Jesus    .      . 

   stop_

   _Journal_abbreviation        'Chem. Eur. J.'
   _Journal_volume               11
   _Journal_issue                23
   _Journal_CSD                  .
   _Book_chapter_title           .
   _Book_volume                  .
   _Book_series                  .
   _Book_ISBN                    .
   _Conference_state_province    .
   _Conference_abstract_number   .
   _Page_first                   7060
   _Page_last                    7074
   _Year                         2005
   _Details                      .

   loop_
      _Keyword

       AcAMP2                 
      'carbohydrate binding'  
       Chitin                 
       hevein                 
      'Molecular Dynamics'    
      'molecular recognition' 
       NMR                    
       protein                

   stop_

save_


#######################################
#  Cited references within the entry  #
#######################################

save_reference-1
   _Saveframe_category           citation

   _Citation_full               
;
Martins JC, Maes D, Loris R, Pepermans HA, Wyns L, Willem R, Verheyden P.
H NMR study of the solution structure of Ac-AMP2, a sugar binding
antimicrobial protein isolated from Amaranthus caudatus. J Mol Biol. 1996 May
3;258(2):322-33.
;
   _Citation_title              'H NMR study of the solution structure of Ac-AMP2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus.'
   _Citation_status              published
   _Citation_type                journal
   _CAS_abstract_code            .
   _MEDLINE_UI_code              .
   _PubMed_ID                    8627629

   loop_
      _Author_ordinal
      _Author_family_name
      _Author_given_name
      _Author_middle_initials
      _Author_family_title

      1 Martins   'J. C.' C. . 
      2 Maes       D.     .  . 
      3 Loris      R.     .  . 
      4 Pepermans 'H. A.' A. . 
      5 Wyns       L.     .  . 
      6 Willem     R.     .  . 
      7 Verheyden  P.     .  . 

   stop_

   _Journal_abbreviation        'J. Mol. Biol.'
   _Journal_name_full           'Journal of molecular biology'
   _Journal_volume               258
   _Journal_issue                2
   _Journal_CSD                  .
   _Book_title                   .
   _Book_chapter_title           .
   _Book_volume                  .
   _Book_series                  .
   _Book_publisher               .
   _Book_publisher_city          .
   _Book_ISBN                    .
   _Conference_title             .
   _Conference_site              .
   _Conference_state_province    .
   _Conference_country           .
   _Conference_start_date        .
   _Conference_end_date          .
   _Conference_abstract_number   .
   _Thesis_institution           .
   _Thesis_institution_city      .
   _Thesis_institution_country   .
   _Page_first                   322
   _Page_last                    333
   _Year                         1996
   _Details                     
;
The conformation in water of antimicrobial protein 2 from Amaranthus caudatus
(Ac-AMP2) was determined using 1H NMR, DIANA and restrained molecular modeling.
Ac-AMP2 is a 30 amino acid residue, lectin-like protein that specifically binds
to chitin, a polymer of beta-1,4-N-acetyl-D-glucosamine. After sequence
specific resonance assignments, a total of 198 distance restraints were
collected from 2D NOESY buildup spectra at 500 MHz at pH 2, supplemented by a
2D NOESY spectrum at 600 MHz. The location of the three previously unassigned
disulfide bridges was determined from preliminary DIANA structures, using a
statistical analysis of intercystinyl distances. The solution structure of
Ac-AMP2 is presented as a set of 26 DIANA structures, further refined by
restrained molecular dynamics using a simulated annealing protocol in the AMBER
force field, with a backbone r.m.s.d. for the well defined Glu3-Cys28 segment
of 0.69(+/-0.12) angstroms. The main structural element is an antiparallel
beta-sheet from Met13 to Lys23 including a betaI-turn over Gln17-Phel8 with a
beta bulge at Gly19. In addition, a beta'I turn over Arg6-Gly7, a beta'III turn
over Ser11-Gly12 and a helical turn from Gly24 to Cys28 are identified. This
structure is very similar to the equivalent regions of the X-ray structure of
wheat germ agglutinin and the NMR structure of hevein.
;

save_


save_reference-2
   _Saveframe_category           citation

   _Citation_full               
;
Muraki M. 
The importance of CH/pi interactions to the function of carbohydrate binding
proteins. Protein Pept Lett. 2002 Jun;9(3):195-209. Review.
;
   _Citation_title              'The importance of CH/pi interactions to the function of carbohydrate binding proteins.'
   _Citation_status              published
   _Citation_type                journal
   _CAS_abstract_code            .
   _MEDLINE_UI_code              .
   _PubMed_ID                    12144516

   loop_
      _Author_ordinal
      _Author_family_name
      _Author_given_name
      _Author_middle_initials
      _Author_family_title

      1 Muraki Michiro . . 

   stop_

   _Journal_abbreviation        'Protein Pept. Lett.'
   _Journal_name_full           'Protein and peptide letters'
   _Journal_volume               9
   _Journal_issue                3
   _Journal_CSD                  .
   _Book_title                   .
   _Book_chapter_title           .
   _Book_volume                  .
   _Book_series                  .
   _Book_publisher               .
   _Book_publisher_city          .
   _Book_ISBN                    .
   _Conference_title             .
   _Conference_site              .
   _Conference_state_province    .
   _Conference_country           .
   _Conference_start_date        .
   _Conference_end_date          .
   _Conference_abstract_number   .
   _Thesis_institution           .
   _Thesis_institution_city      .
   _Thesis_institution_country   .
   _Page_first                   195
   _Page_last                    209
   _Year                         2002
   _Details                     
;
It is suggested that the interactions between the hydrophobic C-H groups of
carbohydrate residues and the pi-electron systems of aromatic amino-acid
residues play an important role in the ligand-recognition function of
carbohydrate-binding proteins. This review focuses on our recent structural and
functional studies of human lysozyme and hevein-domain type lectins (wheat-germ
agglutinin and Ac-AMP2) aimed at understanding how CH/pi interactions are
involved in the actual binding events.
;

save_


save_reference-3
   _Saveframe_category           citation

   _Citation_full               
;
Aboitiz N, Vila-Perello M, Groves P, Asensio JL, Andreu D, Canada FJ,
Jimenez-Barbero J.
NMR and modeling studies of protein-carbohydrate interactions: synthesis,
three-dimensional structure, and recognition properties of a minimum hevein
domain with binding affinity for chitooligosaccharides.
Chembiochem. 2004 Sep 6;5(9):1245-55.
;
   _Citation_title              'NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides.'
   _Citation_status              published
   _Citation_type                journal
   _CAS_abstract_code            .
   _MEDLINE_UI_code              .
   _PubMed_ID                    15368576

   loop_
      _Author_ordinal
      _Author_family_name
      _Author_given_name
      _Author_middle_initials
      _Author_family_title

      1 Aboitiz          Nuria             .  . 
      2 Vila-Perello     Miquel            .  . 
      3 Groves           Patrick           .  . 
      4 Asensio         'Juan Luis'        L. . 
      5 Andreu           David             .  . 
      6 Canada          'Francisco Javier' J. . 
      7 Jimenez-Barbero  Jesus             .  . 

   stop_

   _Journal_abbreviation         Chembiochem
   _Journal_name_full           'Chembiochem : a European journal of chemical biology'
   _Journal_volume               5
   _Journal_issue                9
   _Journal_CSD                  .
   _Book_title                   .
   _Book_chapter_title           .
   _Book_volume                  .
   _Book_series                  .
   _Book_publisher               .
   _Book_publisher_city          .
   _Book_ISBN                    .
   _Conference_title             .
   _Conference_site              .
   _Conference_state_province    .
   _Conference_country           .
   _Conference_start_date        .
   _Conference_end_date          .
   _Conference_abstract_number   .
   _Thesis_institution           .
   _Thesis_institution_city      .
   _Thesis_institution_country   .
   _Page_first                   1245
   _Page_last                    1255
   _Year                         2004
   _Details                     
;
HEV32, a 32-residue, truncated hevein lacking eleven C-terminal amino acids, was
synthesized by solid-phase methodology and correctly folded with three cysteine
bridge pairs. The affinities of HEV32 for small chitin fragments--in the forms
of N,N',N"-triacetylchitotriose ((GlcNAc)3) (millimolar) and
N,N',N",N"',N"",N""'-hexaacetylchitohexaose ((GlcNAc)6) (micromolar)--as
measured by NMR and fluorescence methods, are comparable with those of native
hevein. The HEV32 ligand-binding process is enthalpy driven, while entropy
opposes binding. The NMR structure of ligand-bound HEV32 in aqueous solution
was determined to be highly similar to the NMR structure of ligand-bound
hevein. Solvated molecular-dynamics simulations were performed in order to
monitor the changes in side-chain conformation of the binding site of HEV32 and
hevein upon interaction with ligands. The calculations suggest that the Trp21
side-chain orientation of HEV32 in the free form differs from that in the bound
state; this agrees with fluorescence and thermodynamic data. HEV32 provides a
simple molecular model for studying protein-carbohydrate interactions and for
understanding the physiological relevance of small native hevein domains
lacking C-terminal residues.
;

save_


save_reference-4
   _Saveframe_category           citation

   _Citation_full               
;
Asensio JL, Siebert HC, von Der Lieth CW, Laynez J, Bruix M, Soedjanaamadja
UM, Beintema JJ, Canada FJ, Gabius HJ, Jimenez-Barbero J.
NMR investigations of protein-carbohydrate interactions: studies on the
relevance of Trp/Tyr variations in lectin binding sites as deduced from
titration microcalorimetry and NMR studies on hevein domains. Determination of
the NMR structure of the complex between pseudohevein and
N,N',N"-triacetylchitotriose. Proteins. 2000 Aug 1;40(2):218-36.
;
   _Citation_title              'NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose.'
   _Citation_status              published
   _Citation_type                journal
   _CAS_abstract_code            .
   _MEDLINE_UI_code              .
   _PubMed_ID                    10842338

   loop_
      _Author_ordinal
      _Author_family_name
      _Author_given_name
      _Author_middle_initials
      _Author_family_title

       1  Asensio         'J. L.' L. . 
       2  Siebert         'H. C.' C. . 
       3 'von Der Lieth'  'C. W.' W. . 
       4  Laynez           J.     .  . 
       5  Bruix            M.     .  . 
       6  Soedjanaamadja  'U. M.' M. . 
       7  Beintema        'J. J.' J. . 
       8  Canada          'F. J.' J. . 
       9  Gabius          'H. J.' J. . 
      10  Jimenez-Barbero  J.     .  . 

   stop_

   _Journal_abbreviation         Proteins
   _Journal_name_full            Proteins
   _Journal_volume               40
   _Journal_issue                2
   _Journal_CSD                  .
   _Book_title                   .
   _Book_chapter_title           .
   _Book_volume                  .
   _Book_series                  .
   _Book_publisher               .
   _Book_publisher_city          .
   _Book_ISBN                    .
   _Conference_title             .
   _Conference_site              .
   _Conference_state_province    .
   _Conference_country           .
   _Conference_start_date        .
   _Conference_end_date          .
   _Conference_abstract_number   .
   _Thesis_institution           .
   _Thesis_institution_city      .
   _Thesis_institution_country   .
   _Page_first                   218
   _Page_last                    236
   _Year                         2000
   _Details                     
;
Model studies on lectins and their interactions with carbohydrate ligands in
solution are essential to gain insights into the driving forces for complex
formation and to optimize programs for computer simulations. The specific
interaction of pseudohevein with N,N', N"-triacetylchitotriose has been
analyzed by (1)H-NMR spectroscopy. Because of its small size, with a chain
length of 45 amino acids, this lectin is a prime target to solution-structure
determination by NOESY NMR experiments in water. The NMR-analysis was extended
to assessment of the topology of the complex between pseudohevein and N,
N',N"-triacetylchitotriose. NOESY experiments in water solution provided 342
protein proton-proton distance constraints. Binding of the ligand did not
affect the pattern of the protein nuclear Overhauser effect signal noticeably,
what would otherwise be indicative of a ligand-induced conformational change.
The average backbone (residues 3-41) RMSD of the 20 refined structures was 1.14
A, whereas the heavy atom RMSD was 2.18 A. Two different orientations of the
trisaccharide within the pseudohevein binding site are suggested, furnishing an
explanation in structural terms for the lectin's capacity to target chitin. In
both cases, hydrogen bonds and van der Waals contacts confer stability to the
complexes. This conclusion is corroborated by the thermodynamic parameters of
binding determined by NMR and isothermal titration calorimetry. The association
process was enthalpically driven. In relation to hevein, the
Trp/Tyr-substitution in the binding pocket has only a small effect on the free
energy of binding in contrast to engineered galectin-1 and a mammalian C-type
lectin. A comparison of the three-dimensional structure of pseudohevein in
solution to those reported for wheat germ agglutinin (WGA) in the solid state
and for hevein and WGA-B in solution has been performed, providing a data
source about structural variability of the hevein domains. The experimentally
derived structures and the values of the solvent accessibilities for several
key residues have also been compared with conformations obtained by molecular
dynamics simulations, pointing to the necessity to further refine the programs
to enhance their predictive reliability and, thus, underscoring the importance
of this kind of combined analysis in model systems.
;

save_


save_reference-5
   _Saveframe_category           citation

   _Citation_full               
;
Asensio JL, Canada FJ, Siebert HC, Laynez J, Poveda A, Nieto PM,
Soedjanaamadja UM, Gabius HJ, Jimenez-Barbero J.
Structural basis for chitin recognition by defense proteins: GlcNAc residues
are bound in a multivalent fashion by extended binding sites in hevein
domains. Chem Biol. 2000 Jul;7(7):529-43.
;
   _Citation_title              'Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains.'
   _Citation_status              published
   _Citation_type                journal
   _CAS_abstract_code            .
   _MEDLINE_UI_code              .
   _PubMed_ID                    10903932

   loop_
      _Author_ordinal
      _Author_family_name
      _Author_given_name
      _Author_middle_initials
      _Author_family_title

      1 Asensio         'J. L.' L. . 
      2 Canada          'F. J.' J. . 
      3 Siebert         'H. C.' C. . 
      4 Laynez           J.     .  . 
      5 Poveda           A.     .  . 
      6 Nieto           'P. M.' M. . 
      7 Soedjanaamadja  'U. M.' M. . 
      8 Gabius          'H. J.' J. . 
      9 Jimenez-Barbero  J.     .  . 

   stop_

   _Journal_abbreviation        'Chem. Biol.'
   _Journal_name_full           'Chemistry & biology'
   _Journal_volume               7
   _Journal_issue                7
   _Journal_CSD                  .
   _Book_title                   .
   _Book_chapter_title           .
   _Book_volume                  .
   _Book_series                  .
   _Book_publisher               .
   _Book_publisher_city          .
   _Book_ISBN                    .
   _Conference_title             .
   _Conference_site              .
   _Conference_state_province    .
   _Conference_country           .
   _Conference_start_date        .
   _Conference_end_date          .
   _Conference_abstract_number   .
   _Thesis_institution           .
   _Thesis_institution_city      .
   _Thesis_institution_country   .
   _Page_first                   529
   _Page_last                    543
   _Year                         2000
   _Details                     
;
BACKGROUND: Many plants respond to pathogenic attack by producing defense
proteins that are capable of reversible binding to chitin, a polysaccharide
present in the cell wall of fungi and the exoskeleton of insects. Most of these
chitin-binding proteins include a common structural motif of 30 to 43 residues
organized around a conserved four-disulfide core, known as the 'hevein domain'
or 'chitin-binding' motif. Although a number of structural and thermodynamic
studies on hevein-type domains have been reported, these studies do not clarify
how chitin recognition is achieved. RESULTS: The specific interaction of hevein
with several (GlcNAc)(n) oligomers has been studied using nuclear magnetic
resonance (NMR), analytical ultracentrifugation and isothermal titration
microcalorimetry (ITC). The data demonstrate that hevein binds (GlcNAc)(2-4) in
1:1 stoichiometry with millimolar affinity. In contrast, for (GlcNAc)(5), a
significant increase in binding affinity is observed. Analytical
ultracentrifugation studies on the hevein-(GlcNAc)(5,8) interaction allowed
detection of protein-carbohydrate complexes with a ratio of 2:1 in solution.
NMR structural studies on the hevein-(GlcNAc)(5) complex showed the existence
of an extended binding site with at least five GlcNAc units directly involved
in protein-sugar contacts. CONCLUSIONS: The first detailed structural model for
the hevein-chitin complex is presented on the basis of the analysis of NMR
data. The resulting model, in combination with ITC and analytical
ultracentrifugation data, conclusively shows that recognition of chitin by
hevein domains is a dynamic process, which is not exclusively restricted to the
binding of the nonreducing end of the polymer as previously thought. This
allows chitin to bind with high affinity to a variable number of protein
molecules, depending on the polysaccharide chain length. The biological process
is multivalent.
;

save_


##################################
#  Molecular system description  #
##################################

save_system_AcAMP2F18Pff_F20Pfff
   _Saveframe_category         molecular_system

   _Mol_system_name           'AcAMP2F18Pff/F20Pfff mutant'
   _Abbreviation_common        AcAMP2F18Pff/F20Pfff
   _Enzyme_commission_number   .

   loop_
      _Mol_system_component_name
      _Mol_label

      AcAMP2F18Pff/F20Pfff $AcAMP2F18Pff_F20Pfff 

   stop_

   _System_molecular_weight    .
   _System_physical_state      native
   _System_oligomer_state      monomer
   _System_paramagnetic        no
   _System_thiol_state        'all disulfide bound'

   loop_
      _Biological_function

      'chitin binding lectin' 

   stop_

   _Database_query_date        .
   _Details                    .

save_


    ########################
    #  Monomeric polymers  #
    ########################

save_AcAMP2F18Pff_F20Pfff
   _Saveframe_category                          monomeric_polymer

   _Mol_type                                    polymer
   _Mol_polymer_class                           protein
   _Name_common                                 AcAMP2
   _Name_variant                               'AcAMP2F18Pff/Y20Pfff mutant'
   _Abbreviation_common                         AcAMP2F18Pff/Y20Pfff
   _Molecular_mass                              3209
   _Mol_thiol_state                            'all disulfide bound'
   _Details                                    
;
The secondary structure of this
protein presents beta-sheet on residues over residues 13 to 23.
This protein is a hevein domain, and has high homology with AcAMP2
antimicrobial peptide. Carbohydrate binding site involves residues S16, F18FF,
F20FF and Y27.
;

   	##############################
   	#  Polymer residue sequence  #
   	##############################
   
      _Residue_count                               30
   _Mol_residue_sequence                       
;
VGECVRGRCPSGMCCSQXGX
CGKGPKYCGR
;

   loop_
      _Residue_seq_code
      _Residue_label

       1 VAL   2 GLY   3 GLU   4 CYS   5 VAL 
       6 ARG   7 GLY   8 ARG   9 CYS  10 PRO 
      11 SER  12 GLY  13 MET  14 CYS  15 CYS 
      16 SER  17 GLN  18 PFF  19 GLY  20 PFF 
      21 CYS  22 GLY  23 LYS  24 GLY  25 PRO 
      26 LYS  27 TYR  28 CYS  29 GLY  30 ARG 

   stop_

   _Sequence_homology_query_date                .
   _Sequence_homology_query_revised_last_date   2015-01-28

   loop_
      _Database_name
      _Database_accession_code
      _Database_entry_mol_name
      _Sequence_query_to_submitted_percentage
      _Sequence_subject_length
      _Sequence_identity
      _Sequence_positive
      _Sequence_homology_expectation_value

      BMRB 6591  AcAMP2F18Pff/Y20Pff                                                                                                              100.00 30 100.00 100.00 1.34e-08 
      PDB  1ZNT  "18 Nmr Structures Of Acamp2-Like Peptide With Non Natural Fluoroaromatic Residue (Acamp2f18pffY20PFF) COMPLEX WITH N,N,N- Triac" 100.00 31 100.00 100.00 1.35e-08 

   stop_

save_


    ######################
    #  Polymer residues  #
    ######################

save_chem_comp_PFF
   _Saveframe_category            polymer_residue

   _Mol_type                     'L-peptide linking'
   _Name_common                   4-FLUORO-L-PHENYLALANINE
   _BMRB_code                     .
   _PDB_code                      PFF
   _Standard_residue_derivative   .
   _Molecular_mass                183.180
   _Mol_paramagnetic              .
   _Details                      
;
Information obtained from PDB's Chemical Component Dictionary
at http://wwpdb-remediation.rutgers.edu/downloads.html
Downloaded on Mon Aug  8 14:18:20 2011
;

   loop_
      _Atom_name
      _PDB_atom_name
      _Atom_type
      _Atom_chirality
      _Atom_charge
      _Atom_oxidation_number
      _Atom_unpaired_electrons

      N   N   N . 0 . ? 
      CA  CA  C . 0 . ? 
      C   C   C . 0 . ? 
      O   O   O . 0 . ? 
      OXT OXT O . 0 . ? 
      CB  CB  C . 0 . ? 
      CG  CG  C . 0 . ? 
      CD1 CD1 C . 0 . ? 
      CD2 CD2 C . 0 . ? 
      CE1 CE1 C . 0 . ? 
      CE2 CE2 C . 0 . ? 
      CZ  CZ  C . 0 . ? 
      F   F   F . 0 . ? 
      H   H   H . 0 . ? 
      H2  H2  H . 0 . ? 
      HA  HA  H . 0 . ? 
      HXT HXT H . 0 . ? 
      HB2 HB2 H . 0 . ? 
      HB3 HB3 H . 0 . ? 
      HD1 HD1 H . 0 . ? 
      HD2 HD2 H . 0 . ? 
      HE1 HE1 H . 0 . ? 
      HE2 HE2 H . 0 . ? 

   stop_

   loop_
      _Bond_order
      _Bond_atom_one_atom_name
      _Bond_atom_two_atom_name
      _PDB_bond_atom_one_atom_name
      _PDB_bond_atom_two_atom_name

      SING N   CA  ? ? 
      SING N   H   ? ? 
      SING N   H2  ? ? 
      SING CA  C   ? ? 
      SING CA  CB  ? ? 
      SING CA  HA  ? ? 
      DOUB C   O   ? ? 
      SING C   OXT ? ? 
      SING OXT HXT ? ? 
      SING CB  CG  ? ? 
      SING CB  HB2 ? ? 
      SING CB  HB3 ? ? 
      DOUB CG  CD1 ? ? 
      SING CG  CD2 ? ? 
      SING CD1 CE1 ? ? 
      SING CD1 HD1 ? ? 
      DOUB CD2 CE2 ? ? 
      SING CD2 HD2 ? ? 
      DOUB CE1 CZ  ? ? 
      SING CE1 HE1 ? ? 
      SING CE2 CZ  ? ? 
      SING CE2 HE2 ? ? 
      SING CZ  F   ? ? 

   stop_

save_


    ####################
    #  Natural source  #
    ####################

save_natural_source
   _Saveframe_category   natural_source


   loop_
      _Mol_label
      _Organism_name_common
      _NCBI_taxonomy_ID
      _Superkingdom
      _Kingdom
      _Genus
      _Species
      _Tissue

      $AcAMP2F18Pff_F20Pfff 'inca wheat' 3567 Eukaryota Viridiplantae Amaranthus caudatus seed 

   stop_

save_


    #########################
    #  Experimental source  #
    #########################

save_experimental_source
   _Saveframe_category   experimental_source


   loop_
      _Mol_label
      _Production_method
      _Host_organism_name_common
      _Genus
      _Species
      _Strain
      _Vector_name
      _Details

      $AcAMP2F18Pff_F20Pfff 'chemical synthesis' . . . . . 
;
The residues Phe18 and Tyr20 of the native AcAMP2 were changed to
4-fluorophenylalanine. The aminoacids were manually assembled by solid phase
synthesis using Fmoc chemistry according to satandard protocols.
; 

   stop_

save_


#####################################
#  Sample contents and methodology  #
#####################################
	 
    ########################
    #  Sample description  #
    ########################

save_sample-1
   _Saveframe_category   sample

   _Sample_type          solution
   _Details              .

   loop_
      _Mol_label
      _Concentration_value
      _Concentration_value_units
      _Isotopic_labeling

      $AcAMP2F18Pff_F20Pfff  2.0 mM . 
       H2O                  90   %  . 
       D2O                  10   %  . 

   stop_

save_


############################
#  Computer software used  #
############################

save_XWINNMR
   _Saveframe_category   software

   _Name                 xwinnmr
   _Version              3.2

   loop_
      _Task

      'Data collection' 

   stop_

   _Details             'The software performs acquisition and processing of NMR experiments'

save_


save_XEASY
   _Saveframe_category   software

   _Name                 XEASY
   _Version              1.3.13

   loop_
      _Task

      'Data analysis' 

   stop_

   _Details             
;
Bartels C., Xia T., Billeter M., Guntert P. and Wuthrich K. (1995) J. Biol. NMR
6, 1-10. The program XEASY for computer-supported NMR spectral analysis of
biological macromolecules. 
This program helps visualization and assignment of 2D NMR spectra.
;

save_


save_DYANA
   _Saveframe_category   software

   _Name                 DYANA
   _Version              1.5

   loop_
      _Task

      'Structure solution' 

   stop_

   _Details             
;
Guntert P., Mumenthaler C. and Wuthrich K. (1997) J. Mol. Biol. 273, 283-298.
Torsion angle dynamics for NMR structure calculation with the new program
DYANA. 
This program yields a collection of protein structures that fit the 1H-1H
distance constraints experimentally obtained.
;

save_


save_AMBER
   _Saveframe_category   software

   _Name                 AMBER
   _Version              5.0

   loop_
      _Task

      'Structure refinement' 

   stop_

   _Details             
;
Pearlman D. A., Case D. A., Caldwell J. W., Cheatham T. E., DeBolt S., Ross W.
S., Ferguson D., Seibel G. L., and Kollman P. A. (1995) Comp. Phys. Commun. 91,
1-41. AMBER, a package of computer programs for applying molecular mechanics,
normal mode analysis, molecular dynamics and free energy calculations to
simulate the structural and energetic properties of molecules."
The programs used from this package perform molecular dynamics calculations on
protein structures. They also convert dyana-format pdb files into amber-format
pdb files.
;

save_


#########################
#  Experimental detail  #
#########################

    ##################################
    #  NMR Spectrometer definitions  #
    ##################################

save_NMR_spectrometer
   _Saveframe_category   NMR_spectrometer

   _Manufacturer         Bruker
   _Model                AMX
   _Field_strength       500
   _Details              .

save_


    #############################
    #  NMR applied experiments  #
    #############################

save_TOCSY_1
   _Saveframe_category   NMR_applied_experiment

   _Experiment_name      TOCSY
   _Sample_label        $sample-1

save_


save_NOESY_2
   _Saveframe_category   NMR_applied_experiment

   _Experiment_name      NOESY
   _Sample_label        $sample-1

save_


save_NMR_applied_experiment
   _Saveframe_category                     NMR_applied_experiment

   _Experiment_name                        .
   _BMRB_pulse_sequence_accession_number   .
   _Details                                .

save_


save_NMR_spec_expt__0_1
   _Saveframe_category                     NMR_applied_experiment

   _Experiment_name                        TOCSY
   _BMRB_pulse_sequence_accession_number   .
   _Details                                .

save_


save_NMR_spec_expt__0_2
   _Saveframe_category                     NMR_applied_experiment

   _Experiment_name                        NOESY
   _BMRB_pulse_sequence_accession_number   .
   _Details                                .

save_


#######################
#  Sample conditions  #
#######################

save_conditions-1
   _Saveframe_category   sample_conditions

   _Details              .

   loop_
      _Variable_type
      _Variable_value
      _Variable_value_error
      _Variable_value_units

      'ionic strength'   0.15 0.02 M  
       pH                5.6  0.2  pH 
       temperature     298    0.2  K  

   stop_

save_


####################
#  NMR parameters  #
####################

    ##############################
    #  Assigned chemical shifts  #
    ##############################

	################################
	#  Chemical shift referencing  #
	################################

save_chemical_shift_reference
   _Saveframe_category   chemical_shift_reference

   _Details              .

   loop_
      _Mol_common_name
      _Atom_type
      _Atom_isotope_number
      _Atom_group
      _Chem_shift_units
      _Chem_shift_value
      _Reference_method
      _Reference_type
      _External_reference_sample_geometry
      _External_reference_location
      _External_reference_axis
      _Indirect_shift_ratio

      DSS H 1 'methyl protons' ppm 0.0 internal direct   . . . 1.0         
      DSS H 2 'methyl protons' ppm 0.0 .        indirect . . . 0.153506088 

   stop_

save_


	###################################
	#  Assigned chemical shift lists  #
	###################################

###################################################################
#       Chemical Shift Ambiguity Index Value Definitions          #
#                                                                 #
# The values other than 1 are used for those atoms with different #
# chemical shifts that cannot be assigned to stereospecific atoms #
# or to specific residues or chains.                              #
#                                                                 #
#   Index Value            Definition                             #
#                                                                 #
#      1             Unique (including isolated methyl protons,   #
#                         geminal atoms, and geminal methyl       #
#                         groups with identical chemical shifts)  #
#                         (e.g. ILE HD11, HD12, HD13 protons)     #
#      2             Ambiguity of geminal atoms or geminal methyl #
#                         proton groups (e.g. ASP HB2 and HB3     #
#                         protons, LEU CD1 and CD2 carbons, or    #
#                         LEU HD11, HD12, HD13 and HD21, HD22,    #
#                         HD23 methyl protons)                    #
#      3             Aromatic atoms on opposite sides of          #
#                         symmetrical rings (e.g. TYR HE1 and HE2 #
#                         protons)                                #
#      4             Intraresidue ambiguities (e.g. LYS HG and    #
#                         HD protons or TRP HZ2 and HZ3 protons)  #
#      5             Interresidue ambiguities (LYS 12 vs. LYS 27) #
#      6             Intermolecular ambiguities (e.g. ASP 31 CA   #
#                         in monomer 1 and ASP 31 CA in monomer 2 #
#                         of an asymmetrical homodimer, duplex    #
#                         DNA assignments, or other assignments   #
#                         that may apply to atoms in one or more  #
#                         molecule in the molecular assembly)     #
#      9             Ambiguous, specific ambiguity not defined    #
#                                                                 #
###################################################################
save_AcAMP2F18Pff_Y20Pfff_shifts
   _Saveframe_category               assigned_chemical_shifts

   _Details                         
;
 
The atom HA2 of GLY22 shows up at  1.828; due the proximity to the aromatic 
system of the residue 27
;

   loop_
      _Sample_label

      $sample-1 

   stop_

   _Sample_conditions_label         $conditions-1
   _Chem_shift_reference_set_label  $chemical_shift_reference
   _Mol_system_component_name        AcAMP2F18Pff/F20Pfff
   _Text_data_format                 .
   _Text_data                        .

   loop_
      _Atom_shift_assign_ID
      _Residue_author_seq_code
      _Residue_seq_code
      _Residue_label
      _Atom_name
      _Atom_type
      _Chem_shift_value
      _Chem_shift_value_error
      _Chem_shift_ambiguity_code

        1 .  1 VAL HA   H 3.831 0.004 1 
        2 .  1 VAL HB   H 2.143 0.007 1 
        3 .  1 VAL HG1  H 0.989 0.005 2 
        4 .  1 VAL HG2  H 1.038 0.02  2 
        5 .  2 GLY H    H 8.969 0.02  1 
        6 .  2 GLY HA2  H 3.836 0.001 2 
        7 .  2 GLY HA3  H 4.224 0.012 2 
        8 .  3 GLU H    H 9.095 0.003 1 
        9 .  3 GLU HA   H 4.255 0.006 1 
       10 .  3 GLU HB2  H 1.902 0.005 2 
       11 .  3 GLU HB3  H 1.952 0.008 2 
       12 .  3 GLU HG2  H 2.362 0.007 2 
       13 .  4 CYS H    H 7.654 0.001 1 
       14 .  4 CYS HA   H 4.420 0.005 1 
       15 .  4 CYS HB2  H 2.770 0.005 2 
       16 .  4 CYS HB3  H 3.080 0.004 2 
       17 .  5 VAL H    H 8.398 0.002 1 
       18 .  5 VAL HA   H 4.069 0.003 1 
       19 .  5 VAL HB   H 1.868 0.015 1 
       20 .  5 VAL HG1  H 0.841 0.007 2 
       21 .  6 ARG H    H 9.381 0.003 1 
       22 .  6 ARG HA   H 3.828 0.003 1 
       23 .  6 ARG HB2  H 1.807 0.008 2 
       24 .  6 ARG HB3  H 1.885 0.006 2 
       25 .  6 ARG HG2  H 1.557 0.008 2 
       26 .  6 ARG HD2  H 3.196 0.007 2 
       27 .  6 ARG HE   H 7.145 0.001 1 
       28 .  7 GLY H    H 8.277 0.002 1 
       29 .  7 GLY HA2  H 3.679 0.02  2 
       30 .  7 GLY HA3  H 4.064 0.001 2 
       31 .  8 ARG H    H 7.837 0.004 1 
       32 .  8 ARG HA   H 4.631 0.006 1 
       33 .  8 ARG HB2  H 1.807 0.006 2 
       34 .  8 ARG HB3  H 1.857 0.001 2 
       35 .  8 ARG HG2  H 1.538 0.006 2 
       36 .  8 ARG HG3  H 1.630 0.004 2 
       37 .  8 ARG HD2  H 3.143 0.002 2 
       38 .  8 ARG HH21 H 6.781 0.001 2 
       39 .  8 ARG HH22 H 7.339 0.001 2 
       40 .  9 CYS H    H 8.608 0.005 1 
       41 .  9 CYS HA   H 5.190 0.003 1 
       42 .  9 CYS HB2  H 2.225 0.007 2 
       43 .  9 CYS HB3  H 2.813 0.010 2 
       44 . 10 PRO HA   H 4.405 0.003 1 
       45 . 10 PRO HB2  H 1.672 0.009 2 
       46 . 10 PRO HB3  H 2.340 0.006 2 
       47 . 10 PRO HG2  H 1.911 0.005 2 
       48 . 10 PRO HG3  H 1.960 0.007 2 
       49 . 10 PRO HD2  H 3.433 0.007 2 
       50 . 10 PRO HD3  H 3.916 0.004 2 
       51 . 11 SER H    H 8.278 0.002 1 
       52 . 11 SER HA   H 4.105 0.004 1 
       53 . 11 SER HB2  H 3.677 0.02  2 
       54 . 12 GLY H    H 8.876 0.002 1 
       55 . 12 GLY HA2  H 3.627 0.004 2 
       56 . 12 GLY HA3  H 4.188 0.02  2 
       57 . 13 MET H    H 7.907 0.002 1 
       58 . 13 MET HA   H 4.637 0.009 1 
       59 . 13 MET HB2  H 1.717 0.006 2 
       60 . 13 MET HB3  H 1.985 0.006 2 
       61 . 13 MET HG2  H 2.287 0.006 2 
       62 . 14 CYS H    H 9.212 0.005 1 
       63 . 14 CYS HA   H 4.568 0.007 1 
       64 . 14 CYS HB2  H 2.360 0.004 2 
       65 . 14 CYS HB3  H 3.801 0.001 2 
       66 . 15 CYS H    H 8.769 0.003 1 
       67 . 15 CYS HA   H 4.727 0.02  1 
       68 . 15 CYS HB2  H 2.879 0.002 2 
       69 . 16 SER HA   H 4.893 0.001 1 
       70 . 16 SER HB2  H 4.376 0.004 2 
       71 . 17 GLN H    H 9.133 0.003 1 
       72 . 17 GLN HA   H 4.027 0.008 1 
       73 . 17 GLN HB2  H 1.655 0.002 2 
       74 . 17 GLN HB3  H 1.811 0.006 2 
       75 . 17 GLN HG3  H 1.573 0.004 2 
       76 . 17 GLN HE21 H 7.041 0.007 2 
       77 . 17 GLN HE22 H 7.588 0.02  2 
       78 . 18 PFF H    H 7.489 0.007 1 
       79 . 18 PFF HA   H 4.714 0.02  1 
       80 . 18 PFF HB2  H 2.791 0.003 2 
       81 . 18 PFF HB3  H 3.614 0.006 2 
       82 . 18 PFF HD1  H 7.254 0.002 3 
       83 . 18 PFF HE1  H 7.048 0.02  3 
       84 . 19 GLY H    H 7.850 0.001 1 
       85 . 19 GLY HA2  H 3.530 0.002 2 
       86 . 19 GLY HA3  H 3.925 0.005 2 
       87 . 20 PFF H    H 7.517 0.006 1 
       88 . 20 PFF HA   H 5.064 0.007 1 
       89 . 20 PFF HB2  H 2.884 0.006 2 
       90 . 20 PFF HB3  H 3.342 0.006 2 
       91 . 20 PFF HD1  H 7.035 0.004 3 
       92 . 20 PFF HE1  H 6.680 0.005 3 
       93 . 21 CYS H    H 8.919 0.004 1 
       94 . 21 CYS HA   H 5.503 0.002 1 
       95 . 21 CYS HB2  H 2.799 0.02  2 
       96 . 22 GLY H    H 8.422 0.004 1 
       97 . 22 GLY HA2  H 1.828 0.003 2 
       98 . 22 GLY HA3  H 3.611 0.005 2 
       99 . 23 LYS H    H 8.034 0.004 1 
      100 . 23 LYS HA   H 4.899 0.005 1 
      101 . 23 LYS HB2  H 1.621 0.008 2 
      102 . 23 LYS HB3  H 1.825 0.006 2 
      103 . 23 LYS HG2  H 1.309 0.007 2 
      104 . 23 LYS HG3  H 1.403 0.004 2 
      105 . 23 LYS HD2  H 1.697 0.02  2 
      106 . 23 LYS HE2  H 2.850 0.02  2 
      107 . 24 GLY H    H 8.347 0.003 1 
      108 . 24 GLY HA2  H 3.917 0.002 2 
      109 . 24 GLY HA3  H 4.538 0.005 2 
      110 . 25 PRO HA   H 4.251 0.005 1 
      111 . 25 PRO HB2  H 1.908 0.003 2 
      112 . 25 PRO HG2  H 2.021 0.005 2 
      113 . 25 PRO HG3  H 2.272 0.004 2 
      114 . 25 PRO HD2  H 3.606 0.001 2 
      115 . 25 PRO HD3  H 3.809 0.006 2 
      116 . 26 LYS H    H 8.780 0.002 1 
      117 . 26 LYS HA   H 3.976 0.004 1 
      118 . 26 LYS HB2  H 1.544 0.011 2 
      119 . 26 LYS HB3  H 1.744 0.005 2 
      120 . 26 LYS HG2  H 1.075 0.007 2 
      121 . 26 LYS HG3  H 1.343 0.004 2 
      122 . 27 TYR H    H 7.609 0.002 1 
      123 . 27 TYR HA   H 4.084 0.004 1 
      124 . 27 TYR HB2  H 2.476 0.006 2 
      125 . 27 TYR HB3  H 2.931 0.004 2 
      126 . 27 TYR HD1  H 7.143 0.002 3 
      127 . 27 TYR HE1  H 6.683 0.007 3 
      128 . 28 CYS H    H 8.465 0.001 1 
      129 . 28 CYS HA   H 4.519 0.009 1 
      130 . 28 CYS HB2  H 2.712 0.007 2 
      131 . 28 CYS HB3  H 3.205 0.006 2 
      132 . 29 GLY H    H 7.975 0.002 1 
      133 . 29 GLY HA2  H 3.973 0.010 2 
      134 . 30 ARG H    H 8.273 0.002 1 
      135 . 30 ARG HA   H 4.261 0.008 1 
      136 . 30 ARG HB2  H 1.682 0.002 2 
      137 . 30 ARG HB3  H 1.838 0.004 2 
      138 . 30 ARG HG2  H 1.547 0.003 2 
      139 . 30 ARG HD2  H 3.147 0.004 2 
      140 . 30 ARG HE   H 7.145 0.001 1 
      141 . 30 ARG HH21 H 7.011 0.02  1 
      142 . 30 ARG HH22 H 7.011 0.02  1 

   stop_

save_