data_4467 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Sequence-specific 1H, 13C, and 15N Assignments of the MAR-binding Domain of Chicken MeCP2/ARBP ; _BMRB_accession_number 4467 _BMRB_flat_file_name bmr4467.str _Entry_type original _Submission_date 1999-12-01 _Accession_date 1999-12-01 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Brunner Eike . . 2 Weitzel Joachim . . 3 Heitmann Bjoern . . 4 Maurer Till . . 5 Straetling Wolf H. . 6 Kalbitzer 'Hans Robert' . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 231 "13C chemical shifts" 319 "15N chemical shifts" 109 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2002-07-12 update BMRB 'Modify the saveframe name.' 2000-12-15 original author 'Original release.' stop_ loop_ _Related_BMRB_accession_number _Relationship 4280 . stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Sequence-specific 1H, 13C, and 15N Assignments of the MAR-binding Domain of Chicken MeCP2/ARBP ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 20377249 _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Brunner Eike . . 2 Weitzel Joachim . . 3 Heitmann Bjoern . . 4 Maurer Till . . 5 Straetling Wolf H. . 6 Kalbitzer 'Hans Robert' . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of Biomolecular NMR' _Journal_volume 17 _Journal_issue 2 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 175 _Page_last 176 _Year 2000 _Details . loop_ _Keyword 'Chicken methyl-CpG-binding protein 2 (cMeCP2/ARBP)' 'NMR assignments' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U. and Zoghbi, H.Y. (1999) Nature Genet. 23, 185-188. ; _Citation_title 'Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10508514 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Amir 'R. E.' E. . 2 'Van den Veyver' 'I. B.' B. . 3 Wan M. . . 4 Tran 'C. Q.' Q. . 5 Francke U. . . 6 Zoghbi 'H. Y.' Y. . stop_ _Journal_abbreviation 'Nat. Genet.' _Journal_name_full 'Nature genetics' _Journal_volume 23 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 185 _Page_last 188 _Year 1999 _Details ; Rett syndrome (RTT, MIM 312750) is a progressive neurodevelopmental disorder and one of the most common causes of mental retardation in females, with an incidence of 1 in 10,000-15,000 (ref. 2). Patients with classic RTT appear to develop normally until 6-18 months of age, then gradually lose speech and purposeful hand use, and develop microcephaly, seizures, autism, ataxia, intermittent hyperventilation and stereotypic hand movements. After initial regression, the condition stabilizes and patients usually survive into adulthood. As RTT occurs almost exclusively in females, it has been proposed that RTT is caused by an X-linked dominant mutation with lethality in hemizygous males. Previous exclusion mapping studies using RTT families mapped the locus to Xq28 (refs 6,9,10,11). Using a systematic gene screening approach, we have identified mutations in the gene (MECP2 ) encoding X-linked methyl-CpG-binding protein 2 (MeCP2) as the cause of some cases of RTT. MeCP2 selectively binds CpG dinucleotides in the mammalian genome and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (refs 12,13). In 5 of 21 sporadic patients, we found 3 de novo missense mutations in the region encoding the highly conserved methyl-binding domain (MBD) as well as a de novo frameshift and a de novo nonsense mutation, both of which disrupt the transcription repression domain (TRD). In two affected half-sisters of a RTT family, we found segregation of an additional missense mutation not detected in their obligate carrier mother. This suggests that the mother is a germline mosaic for this mutation. Our study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Jones, P.L., Veenstra, G.J.C., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J. and Wolffe, A.P. (1998) Nature Genet. 19, 187-191. ; _Citation_title 'Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9620779 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Jones 'P. L.' L. . 2 Veenstra 'G. J.' J. . 3 Wade 'P. A.' A. . 4 Vermaak D. . . 5 Kass 'S. U.' U. . 6 Landsberger N. . . 7 Strouboulis J. . . 8 Wolffe 'A. P.' P. . stop_ _Journal_abbreviation 'Nat. Genet.' _Journal_name_full 'Nature genetics' _Journal_volume 19 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 187 _Page_last 191 _Year 1998 _Details ; CpG methylation in vertebrates correlates with alterations in chromatin structure and gene silencing. Differences in DNA-methylation status are associated with imprinting phenomena and carcinogenesis. In Xenopus laevis oocytes, DNA methylation dominantly silences transcription through the assembly of a repressive nucleosomal array. Methylated DNA assembled into chromatin binds the transcriptional repressor MeCP2 which cofractionates with Sin3 and histone deacetylase. Silencing conferred by MeCP2 and methylated DNA can be relieved by inhibition of histone deacetylase, facilitating the remodelling of chromatin and transcriptional activation. These results establish a direct causal relationship between DNA methylation-dependent transcriptional silencing and the modification of chromatin. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jeppesen, P., Klein, F. and Bird, A. (1992) Cell 69, 905-914. ; _Citation_title 'Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1606614 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Lewis 'J. D.' D. . 2 Meehan 'R. R.' R. . 3 Henzel 'W. J.' J. . 4 Maurer-Fogy I. . . 5 Jeppesen P. . . 6 Klein F. . . 7 Bird A. . . stop_ _Journal_abbreviation Cell _Journal_name_full Cell _Journal_volume 69 _Journal_issue 6 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 905 _Page_last 914 _Year 1992 _Details ; Methylation of mammalian DNA can lead to repression of transcription and alteration of chromatin structure. Recent evidence suggests that both effects are the result of an interaction between the methylated sites and methyl-CpG-binding proteins (MeCPs). MeCP1 has previously been detected in crude nuclear extracts. Here we report the identification, purification, and cDNA cloning of a novel MeCP called MeCP2. Unlike MeCP1, the new protein is able to bind to DNA that contains a single methyl-CpG pair. By staining with an antibody, we show that the distribution of MeCP2 along the chromosomes parallels that of methyl-CpG. In mouse, for example, MeCP2 is concentrated in pericentromeric heterochromatin, which contains a large fraction (about 40%) of all genomic 5-methylcytosine. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Markley, J.L., Bax, A., Arata, Y., Hilbers, C.W., Kaptein, R., Sykes, B.D., Wright, P.E. and W?thrich, K. (1998) Pure & Appl. Chem. 70, 117-142. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_5 _Saveframe_category citation _Citation_full 'Nan, X., Meehan, R.R. and Bird, A. (1993) Nucleic Acids Res. 21, 4886-4892.' _Citation_title 'Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8177735 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Nan X. . . 2 Meehan 'R. R.' R. . 3 Bird A. . . stop_ _Journal_abbreviation 'Nucleic Acids Res.' _Journal_name_full 'Nucleic acids research' _Journal_volume 21 _Journal_issue 21 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 4886 _Page_last 4892 _Year 1993 _Details ; MeCP2 is a chromosomal protein which binds to DNA that is methylated at CpG. In situ immunofluorescence in mouse cells has shown that the protein is most concentrated in pericentromeric heterochromatin, suggesting that MeCP2 may play a role in the formation of inert chromatin. Here we have isolated a minimal methyl-CpG binding domain (MBD) from MeCP2. MBD is 85 amino acids in length, and binds exclusively to DNA that contains one or more symmetrically methylated CpGs. MBD has negligable non-specific affinity for DNA, confirming that non-specific and methyl-CpG specific binding domains of MeCP2 are distinct. In vitro footprinting indicates that MBD binding can protect a 12 nucleotide region surrounding a methyl-CpG pair, with an approximate dissociation constant of 10(-9) M. ; save_ save_ref_6 _Saveframe_category citation _Citation_full 'Nan, X., Campoy, F.J. and Bird, A. (1997) Cell 88, 471-481.' _Citation_title 'MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9038338 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Nan X. . . 2 Campoy 'F. J.' J. . 3 Bird A. . . stop_ _Journal_abbreviation Cell _Journal_name_full Cell _Journal_volume 88 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 471 _Page_last 481 _Year 1997 _Details ; MeCP2 is an abundant mammalian protein that binds to methylated CpG. We have found that native and recombinant MeCP2 repress transcription in vitro from methylated promoters but do not repress nonmethylated promoters. Repression is nonlinearly dependent on the local density of methylation, becoming significant at the density found in bulk vertebrate genomic DNA. Transient transfection using fusions with the GAL4 DNA binding domain identified a region of MeCP2 that is capable of long-range repression in vivo. Moreover, MeCP2 is able to displace histone H1 from preassembled chromatin that contains methyl-CpG. These properties, together with the abundance of MeCP2 and the high frequency of its 2 bp binding site, suggest a role as a global transcriptional repressor in vertebrate genomes. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; Nan, X., Ng, H.-H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenmann, R.N. and Bird, A. (1998) Nature 393, 386-389. ; _Citation_title 'Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9620804 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Nan X. . . 2 Ng 'H. H.' H. . 3 Johnson 'C. A.' A. . 4 Laherty 'C. D.' D. . 5 Turner 'B. M.' M. . 6 Eisenman 'R. N.' N. . 7 Bird A. . . stop_ _Journal_abbreviation Nature _Journal_name_full Nature _Journal_volume 393 _Journal_issue 6683 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 386 _Page_last 389 _Year 1998 _Details ; Cytosine residues in the sequence 5'CpG (cytosine-guanine) are often postsynthetically methylated in animal genomes. CpG methylation is involved in long-term silencing of certain genes during mammalian development and in repression of viral genomes. The methyl-CpG-binding proteins MeCP1 and MeCP2 interact specifically with methylated DNA and mediate transcriptional repression. Here we study the mechanism of repression by MeCP2, an abundant nuclear protein that is essential for mouse embryogenesis. MeCP2 binds tightly to chromosomes in a methylation-dependent manner. It contains a transcriptional-repression domain (TRD) that can function at a distance in vitro and in vivo. We show that a region of MeCP2 that localizes with the TRD associates with a corepressor complex containing the transcriptional repressor mSin3A and histone deacetylases. Transcriptional repression in vivo is relieved by the deacetylase inhibitor trichostatin A, indicating that deacetylation of histones (and/or of other proteins) is an essential component of this repression mechanism. The data suggest that two global mechanisms of gene regulation, DNA methylation and histone deacetylation, can be linked by MeCP2. ; save_ save_ref_8 _Saveframe_category citation _Citation_full 'von Kries, J.P., Buhrmester, H. and Str?tling, W.H. (1991) Cell 64, 123-135.' _Citation_title 'A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1846084 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'von Kries' 'J. P.' P. . 2 Buhrmester H. . . 3 Stratling 'W. H.' H. . stop_ _Journal_abbreviation Cell _Journal_name_full Cell _Journal_volume 64 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 123 _Page_last 135 _Year 1991 _Details ; Matrix/scaffold attachment regions (MARs/SARs) partition chromatin into functional loop domains. Here we have identified a chicken protein that selectively binds to MARs from the chicken lysozyme locus and to MARs from Drosophila, mouse, and human genes. This protein, named ARBP (for attachment region binding protein), was purified to homogeneity and shown to bind to MARs in a cooperative fashion. ARBP is an abundant nuclear protein and a component of the internal nuclear network. Deletion mutants indicate that multiple AT-rich sequences, if contained in a minimal approximately 350 bp MAR fragment, can lead to efficient binding of ARBP. Furthermore, dimerization mutants show that, to bind ARBP efficiently, MAR sequences can act synergistically over large distances, apparently with the intervening DNA looping out. The binding characteristics of ARBP to MARs reproduce those of unfractionated matrix preparations, suggesting that ARBP is an important nuclear element for the generation of functional chromatin loops. ; save_ save_ref_9 _Saveframe_category citation _Citation_full ; Wakefield, R.I.D., Smith, B.O., Nan, X., Free, A., Soteriou, A., Uhrin, D., Bird, A.P. and Barlow, P.N. (1999) J. Mol. Biol. 291, 1055-1065. ; _Citation_title 'The solution structure of the domain from MeCP2 that binds to methylated DNA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10518942 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wakefield 'R. I.' I. . 2 Smith 'B. O.' O. . 3 Nan X. . . 4 Free A. . . 5 Soteriou A. . . 6 Uhrin D. . . 7 Bird 'A. P.' P. . 8 Barlow 'P. N.' N. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 291 _Journal_issue 5 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1055 _Page_last 1065 _Year 1999 _Details ; MeCP2 is an abundant mammalian protein that binds methylated CpG (mCpG) sequences within double-stranded DNA, represses transcription by recruiting histone deacetylases, and is essential for embryonic development. It is one of a family of proteins which mediate the biological consequences of DNA methylation. These proteins each possess a sequence motif of about 70 residues which, in MeCP2, form a domain necessary and sufficient for binding to mCpG. The solution structure of the mCpG-binding domain (MBD) from MeCP2 has been solved and the DNA-binding surface of the domain mapped using NMR spectroscopy. Residues 95-162 of MeCP2 adopt a novel fold forming a wedge-shaped structure. An N-terminal four-stranded antiparallel beta-sheet forms one face of the wedge, while the other face is formed mainly by a C-terminal helical region. The thin end of the wedge is extended by a long loop between beta-strands B and C containing many basic residues. The B-C loop together with residues in strands B, C and D, and at the N terminus of the alpha-helix, appears to form an interface with methylated DNA. Unstructured residues at the NH2 terminus of the domain are also involved in formation of the complex. The presence of numerous arginine and lysine side-chains on the DNA-binding surface of MBD is consistent with the requirement for the mCpG site to be flanked by non-specific sequences of base-pairs. The absence of symmetry in the domain implies that recognition does not exploit the symmetry of the binding site. A conserved hydrophobic pocket containing the side-chains of Tyr123 and Ile125 on the positively charged beta-sheet face is a candidate for the region of contact with the methyl-groups of the modified cytosine residues. ; save_ save_ref_10 _Saveframe_category citation _Citation_full ; Weitzel, J.M., Buhrmester, H. and Str?tling, W.H. (1997) Mol. Cell. Biol. 17, 5656-5666. ; _Citation_title 'Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9271441 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Weitzel 'J. M.' M. . 2 Buhrmester H. . . 3 Stratling 'W. H.' H. . stop_ _Journal_abbreviation 'Mol. Cell. Biol.' _Journal_name_full 'Molecular and cellular biology' _Journal_volume 17 _Journal_issue 9 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 5656 _Page_last 5666 _Year 1997 _Details ; Here, we describe the cloning and further characterization of chicken ARBP, an abundant nuclear protein with a high affinity for MAR/SARs. Surprisingly, ARBP was found to be homologous to the rat protein MeCP2, previously identified as a methyl-CpG-binding protein. A region spanning 125 amino acids in the N-terminal halves is 96.8% identical between chicken ARBP and rat MeCP2. A deletion mutation analysis using Southwestern and band shift assays identified this highly conserved region as the MAR DNA binding domain. Alignment of chicken ARBP with rat and human MeCP2 proteins revealed six trinucleotide amplifications generating up to 34-fold repetitions of a single amino acid. Because MeCP2 was previously localized to pericentromeric heterochromatin in mouse chromosomes, we analyzed the in vitro binding of ARBP to various repetitive sequences. In band shift experiments, ARBP binds to two chicken repetitive sequences as well as to mouse satellite DNA with high affinity similar to that of its binding to chicken lysozyme MAR fragments. In mouse satellite DNA, use of several footprinting techniques characterized two high-affinity binding sites, whose sequences are related to the ARBP binding site consensus in the chicken lysozyme MAR (5'-GGTGT-3'). Band shift experiments indicated that methylation increased in vitro binding of ARBP to mouse satellite DNA two- to fivefold. Our results suggest that ARBP/MeCP2 is a multifunctional protein with roles in loop domain organization of chromatin, the structure of pericentromeric heterochromatin, and DNA methylation. ; save_ save_ref_11 _Saveframe_category citation _Citation_full 'Wishart, D.S. and Sykes B.D. (1994) J. Biomol. NMR 4, 171-180.' _Citation_title 'The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8019132 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wishart 'D. S.' S. . 2 Sykes 'B. D.' D. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 4 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 171 _Page_last 180 _Year 1994 _Details ; A simple technique for identifying protein secondary structures through the analysis of backbone 13C chemical shifts is described. It is based on the Chemical-Shift Index [Wishart et al. (1992) Biochemistry, 31, 1647-1651] which was originally developed for the analysis of 1H(alpha) chemical shifts. By extending the Chemical-Shift Index to include 13C(alpha), 13C(beta) and carbonyl 13C chemical shifts, it is now possible to use four independent chemical-shift measurements to identify and locate protein secondary structures. It is shown that by combining both 1H and 13C chemical-shift indices to produce a 'consensus' estimate of secondary structure, it is possible to achieve a predictive accuracy in excess of 92%. This suggests that the secondary structure of peptides and proteins can be accurately obtained from 1H and 13C chemical shifts, without recourse to NOE measurements. ; save_ ################################## # Molecular system description # ################################## save_system_MeCP2_ARBP _Saveframe_category molecular_system _Mol_system_name 'chicken MeCP2/ARBP monomer' _Abbreviation_common MeCP2/ARBP _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label MeCP2/ARBP $MeCP2_ARBP stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function ; methyl-CpG-binding protein, attachment region binding protein ; stop_ _Database_query_date . _Details ; The sequence studied in our paper (125 residues) is significantly longer than the methyl binding domain studied in PDB entry 1qk9 (88 residues) and includes the complete biologically important domain binding nuclear matrix attached regions. A second difference is, that our system stems from chicken, the other one from rat. ; save_ ######################## # Monomeric polymers # ######################## save_MeCP2_ARBP _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Methyl-CpG-binding protein, attachment region binding protein' _Abbreviation_common MeCP2/ARBP _Molecular_mass 16300 _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 125 _Mol_residue_sequence ; APAVPEASASPKQRRSIIRD RGPMYDDPTLPEGWTRKLKQ RKSGRSAGKYDVYLINPQGK AFRSKVELIAYFEKVGDTSL DPNDFDFTVTGRGSPSRREQ RPPKKAKSPKSPGSGRGRGR PKGSG ; loop_ _Residue_seq_code _Residue_label 1 ALA 2 PRO 3 ALA 4 VAL 5 PRO 6 GLU 7 ALA 8 SER 9 ALA 10 SER 11 PRO 12 LYS 13 GLN 14 ARG 15 ARG 16 SER 17 ILE 18 ILE 19 ARG 20 ASP 21 ARG 22 GLY 23 PRO 24 MET 25 TYR 26 ASP 27 ASP 28 PRO 29 THR 30 LEU 31 PRO 32 GLU 33 GLY 34 TRP 35 THR 36 ARG 37 LYS 38 LEU 39 LYS 40 GLN 41 ARG 42 LYS 43 SER 44 GLY 45 ARG 46 SER 47 ALA 48 GLY 49 LYS 50 TYR 51 ASP 52 VAL 53 TYR 54 LEU 55 ILE 56 ASN 57 PRO 58 GLN 59 GLY 60 LYS 61 ALA 62 PHE 63 ARG 64 SER 65 LYS 66 VAL 67 GLU 68 LEU 69 ILE 70 ALA 71 TYR 72 PHE 73 GLU 74 LYS 75 VAL 76 GLY 77 ASP 78 THR 79 SER 80 LEU 81 ASP 82 PRO 83 ASN 84 ASP 85 PHE 86 ASP 87 PHE 88 THR 89 VAL 90 THR 91 GLY 92 ARG 93 GLY 94 SER 95 PRO 96 SER 97 ARG 98 ARG 99 GLU 100 GLN 101 ARG 102 PRO 103 PRO 104 LYS 105 LYS 106 ALA 107 LYS 108 SER 109 PRO 110 LYS 111 SER 112 PRO 113 GLY 114 SER 115 GLY 116 ARG 117 GLY 118 ARG 119 GLY 120 ARG 121 PRO 122 LYS 123 GLY 124 SER 125 GLY stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-11-24 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value BMRB 4280 "Methyl binding domain of MeCP2" 72.00 92 98.89 98.89 9.51e-56 PDB 1QK9 "The Solution Structure Of The Domain From Mecp2 That Binds To Methylated Dna" 72.00 92 98.89 98.89 9.51e-56 PDB 1UB1 "Solution Structure Of The Matrix Attachment Region-Binding Domain Of Chicken Mecp2" 100.00 133 100.00 100.00 6.98e-82 EMBL CAA74577 "attachment region binding protein, partial [Gallus gallus]" 100.00 344 100.00 100.00 1.78e-80 GB EPY78157 "interleukin-1 receptor-associated kinase 1 [Camelus ferus]" 70.40 786 100.00 100.00 6.90e-52 REF XP_004645154 "PREDICTED: methyl-CpG-binding protein 2 isoform X1 [Octodon degus]" 100.00 498 97.60 99.20 5.64e-78 REF XP_004645155 "PREDICTED: methyl-CpG-binding protein 2 isoform X2 [Octodon degus]" 100.00 486 97.60 99.20 5.44e-78 REF XP_006113271 "PREDICTED: methyl-CpG-binding protein 2 [Pelodiscus sinensis]" 77.60 208 98.97 100.00 1.14e-61 REF XP_007054114 "PREDICTED: uncharacterized protein LOC102941306, partial [Chelonia mydas]" 77.60 337 98.97 100.00 3.19e-60 REF XP_008175578 "PREDICTED: methyl-CpG-binding protein 2 [Chrysemys picta bellii]" 60.00 141 98.67 98.67 6.85e-45 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $MeCP2_ARBP chicken 9031 Eukaryota Metazoa Gallus gallus stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name $MeCP2_ARBP 'recombinant technology' 'E. coli' Escherichia coli BL21(DE3)pLysS plasmid pET-cARBP-Ex4.2 stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $MeCP2_ARBP 2.0 mM '[U-15N; U-13C]' stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $MeCP2_ARBP 2.0 mM [U-15N] stop_ save_ save_sample_3 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $MeCP2_ARBP 2.0 mM . stop_ save_ save_sample_4 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $MeCP2_ARBP 2.0 mM '[U-2H; U-13C; U-15N]' stop_ save_ ############################ # Computer software used # ############################ save_AURELIA _Saveframe_category software _Name AURELIA _Version 2.5 loop_ _Task visualisation stop_ _Details . save_ save_XWINNMR _Saveframe_category software _Name XWINNMR _Version 2.5 loop_ _Task processing stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 800 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_HNCA_1 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label . save_ save_CBCA(CO)NH_2 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _Sample_label . save_ save_1H-15N-HSQC_3 _Saveframe_category NMR_applied_experiment _Experiment_name 1H-15N-HSQC _Sample_label . save_ save_1H-15N-NOESY_HSQC_4 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-NOESY HSQC' _Sample_label . save_ save_1H-15N-TOCSY_HSQC_5 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-TOCSY HSQC' _Sample_label . save_ save_HNCO_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label . save_ save_HCCH-TOCSY_7 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name CBCA(CO)NH _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name 1H-15N-HSQC _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-NOESY HSQC' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N-TOCSY HSQC' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_7 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_Ex-cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.8 0.1 n/a temperature 298 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_Assigned_chemical_shifts_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 $sample_2 $sample_3 $sample_4 stop_ _Sample_conditions_label $Ex-cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name MeCP2/ARBP _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 ALA H H 8.453 0.02 1 2 . 1 ALA HA H 4.6 0.05 1 3 . 1 ALA CA C 50.33 0.2 1 4 . 1 ALA N N 126.5 0.34 1 5 . 2 PRO C C 176.4 0.2 1 6 . 2 PRO CA C 62.54 0.2 1 7 . 2 PRO CB C 31.5 0.2 1 8 . 3 ALA H H 8.426 0.02 1 9 . 3 ALA HA H 4.384 0.05 1 10 . 3 ALA C C 176.2 0.2 1 11 . 3 ALA CA C 52.08 0.2 1 12 . 3 ALA CB C 18.89 0.2 1 13 . 3 ALA N N 123.95 0.34 1 14 . 4 VAL H H 7.85 0.02 1 15 . 4 VAL HA H 4.289 0.05 1 16 . 4 VAL CA C 58.5 0.2 1 17 . 4 VAL N N 117.5 0.34 1 18 . 5 PRO C C 177.01 0.2 1 19 . 5 PRO CA C 62.82 0.2 1 20 . 5 PRO CB C 31.32 0.2 1 21 . 6 GLU H H 8.569 0.02 1 22 . 6 GLU HA H 4.372 0.05 1 23 . 6 GLU C C 176.6 0.2 1 24 . 6 GLU CA C 56.46 0.2 1 25 . 6 GLU CB C 29.5 0.2 1 26 . 6 GLU N N 120.7 0.34 1 27 . 7 ALA H H 8.43 0.02 1 28 . 7 ALA HA H 4.184 0.05 1 29 . 7 ALA C C 177.8 0.2 1 30 . 7 ALA CA C 52.47 0.2 1 31 . 7 ALA CB C 18.6 0.2 1 32 . 7 ALA N N 124.59 0.34 1 33 . 8 SER H H 8.263 0.02 1 34 . 8 SER HA H 4.327 0.05 1 35 . 8 SER C C 174.2 0.2 1 36 . 8 SER CA C 58.023 0.2 1 37 . 8 SER CB C 63.66 0.2 1 38 . 8 SER N N 114.3 0.34 1 39 . 9 ALA H H 8.262 0.02 1 40 . 9 ALA HA H 4.399 0.05 1 41 . 9 ALA C C 177.4 0.2 1 42 . 9 ALA CA C 52.03 0.2 1 43 . 9 ALA CB C 18.82 0.2 1 44 . 9 ALA N N 125.23 0.34 1 45 . 10 SER H H 8.278 0.02 1 46 . 10 SER HA H 4.661 0.05 1 47 . 10 SER CA C 56.14 0.2 1 48 . 10 SER N N 116.24 0.34 1 49 . 11 PRO C C 177.2 0.2 1 50 . 11 PRO CA C 63.15 0.2 1 51 . 11 PRO CB C 31.38 0.2 1 52 . 12 LYS H H 8.35 0.02 1 53 . 12 LYS HA H 4.463 0.05 1 54 . 12 LYS C C 176.78 0.2 1 55 . 12 LYS CA C 56.31 0.2 1 56 . 12 LYS CB C 32.46 0.2 1 57 . 12 LYS N N 120 0.34 1 58 . 13 GLN H H 8.27 0.02 1 59 . 13 GLN HA H 4.266 0.05 1 60 . 13 GLN C C 176.59 0.2 1 61 . 13 GLN CA C 55.65 0.2 1 62 . 13 GLN CB C 32.32 0.2 1 63 . 13 GLN N N 120 0.34 1 64 . 14 ARG H H 8.347 0.02 1 65 . 14 ARG HA H 4.231 0.05 1 66 . 14 ARG C C 176.11 0.2 1 67 . 14 ARG CA C 55.73 0.2 1 68 . 14 ARG CB C 29.2 0.2 1 69 . 14 ARG N N 122.66 0.34 1 70 . 15 ARG H H 8.407 0.02 1 71 . 15 ARG HA H 4.316 0.05 1 72 . 15 ARG C C 176.29 0.2 1 73 . 15 ARG CA C 56.1 0.2 1 74 . 15 ARG CB C 30.37 0.2 1 75 . 15 ARG N N 122 0.34 1 76 . 16 SER H H 8.39 0.02 1 77 . 16 SER HA H 4.358 0.05 1 78 . 16 SER C C 174.2 0.2 1 79 . 16 SER CA C 57.97 0.2 1 80 . 16 SER CB C 63.64 0.2 1 81 . 16 SER N N 116.88 0.34 1 82 . 17 ILE H H 8.209 0.02 1 83 . 17 ILE HA H 4.185 0.05 1 84 . 17 ILE C C 176 0.2 1 85 . 17 ILE CA C 60.8 0.2 1 86 . 17 ILE CB C 38 0.2 1 87 . 17 ILE N N 122 0.34 1 88 . 18 ILE H H 8.251 0.02 1 89 . 18 ILE HA H 4.194 0.05 1 90 . 18 ILE C C 175.2 0.2 1 91 . 18 ILE CA C 60.67 0.2 1 92 . 18 ILE CB C 37.7 0.2 1 93 . 18 ILE N N 124.59 0.34 1 94 . 19 ARG H H 8.422 0.02 1 95 . 19 ARG HA H 4.147 0.05 1 96 . 19 ARG C C 174.66 0.2 1 97 . 19 ARG CA C 55.7 0.2 1 98 . 19 ARG CB C 30.54 0.2 1 99 . 19 ARG N N 125.23 0.34 1 100 . 20 ASP H H 8.355 0.02 1 101 . 20 ASP HA H 4.34 0.05 1 102 . 20 ASP C C 175.83 0.2 1 103 . 20 ASP CA C 54.09 0.2 1 104 . 20 ASP CB C 40.6 0.2 1 105 . 20 ASP N N 121.38 0.34 1 106 . 21 ARG H H 8.355 0.02 1 107 . 21 ARG C C 176.27 0.2 1 108 . 21 ARG CA C 55.96 0.2 1 109 . 21 ARG CB C 30.79 0.2 1 110 . 21 ARG N N 120.74 0.34 1 111 . 22 GLY H H 8.357 0.02 1 112 . 22 GLY HA2 H 4.337 0.05 2 113 . 22 GLY HA3 H 4.042 0.05 2 114 . 22 GLY CA C 44.2 0.2 1 115 . 22 GLY N N 109.2 0.34 1 116 . 23 PRO C C 177.17 0.2 1 117 . 23 PRO CA C 62.58 0.2 1 118 . 23 PRO CB C 33.76 0.2 1 119 . 24 MET CA C 56.5 0.2 1 120 . 24 MET CB C 34.5 0.2 1 121 . 25 TYR H H 8.4 0.02 1 122 . 25 TYR HA H 4.368 0.05 1 123 . 25 TYR C C 174.84 0.2 1 124 . 25 TYR CA C 60.6 0.2 1 125 . 25 TYR CB C 38.55 0.2 1 126 . 25 TYR N N 124.05 0.34 1 127 . 26 ASP H H 7.679 0.02 1 128 . 26 ASP HA H 4.906 0.05 1 129 . 26 ASP C C 174.06 0.2 1 130 . 26 ASP CA C 52.647 0.2 1 131 . 26 ASP CB C 43.3 0.2 1 132 . 26 ASP N N 115.5 0.34 1 133 . 27 ASP H H 8.748 0.02 1 134 . 27 ASP HA H 5.3 0.05 1 135 . 27 ASP CA C 50.01 0.2 1 136 . 27 ASP CB C 43.09 0.2 1 137 . 27 ASP N N 118.81 0.34 1 138 . 28 PRO C C 176.8 0.2 1 139 . 28 PRO CA C 63.2 0.2 1 140 . 28 PRO CB C 31.9 0.2 1 141 . 29 THR H H 8.44 0.02 1 142 . 29 THR HA H 4.25 0.05 1 143 . 29 THR C C 175.4 0.2 1 144 . 29 THR CA C 61.9 0.2 1 145 . 29 THR CB C 68.96 0.2 1 146 . 29 THR N N 109.8 0.34 1 147 . 30 LEU H H 7.025 0.02 1 148 . 30 LEU HA H 4.136 0.05 1 149 . 30 LEU CA C 53.152 0.2 1 150 . 30 LEU N N 123.3 0.34 1 151 . 31 PRO HA H 4.707 0.05 1 152 . 31 PRO C C 175.75 0.2 1 153 . 31 PRO CA C 61.985 0.2 1 154 . 31 PRO CB C 30.45 0.2 1 155 . 32 GLU H H 8.438 0.02 1 156 . 32 GLU HA H 5.44 0.05 1 157 . 32 GLU C C 175.4 0.2 1 158 . 32 GLU CA C 58.22 0.2 1 159 . 32 GLU CB C 29.1 0.2 1 160 . 32 GLU N N 120 0.34 1 161 . 33 GLY H H 8.928 0.02 1 162 . 33 GLY HA2 H 4.35 0.05 2 163 . 33 GLY HA3 H 3.721 0.05 2 164 . 33 GLY C C 173.2 0.2 1 165 . 33 GLY CA C 45.32 0.2 1 166 . 33 GLY N N 113.67 0.34 1 167 . 34 TRP H H 8.498 0.02 1 168 . 34 TRP HA H 5.249 0.05 1 169 . 34 TRP C C 174.2 0.2 1 170 . 34 TRP CA C 57.2 0.2 1 171 . 34 TRP CB C 29.2 0.2 1 172 . 34 TRP N N 121.4 0.34 1 173 . 35 THR H H 9.209 0.02 1 174 . 35 THR HA H 4.705 0.05 1 175 . 35 THR C C 172 0.2 1 176 . 35 THR CA C 60.8 0.2 1 177 . 35 THR CB C 72.4 0.2 1 178 . 35 THR N N 112.39 0.34 1 179 . 36 ARG H H 8.446 0.02 1 180 . 36 ARG HA H 5.46 0.05 1 181 . 36 ARG C C 175 0.2 1 182 . 36 ARG CA C 53.8 0.2 1 183 . 36 ARG CB C 33.5 0.2 1 184 . 36 ARG N N 120 0.34 1 185 . 37 LYS H H 9.479 0.02 1 186 . 37 LYS HA H 4.878 0.05 1 187 . 37 LYS C C 174.1 0.2 1 188 . 37 LYS CA C 54.4 0.2 1 189 . 37 LYS CB C 35.2 0.2 1 190 . 37 LYS N N 123.95 0.34 1 191 . 38 LEU H H 9.04 0.02 1 192 . 38 LEU HA H 5.384 0.05 1 193 . 38 LEU C C 177.3 0.2 1 194 . 38 LEU CA C 53.6 0.2 1 195 . 38 LEU CB C 42.8 0.2 1 196 . 38 LEU N N 125.23 0.34 1 197 . 39 LYS H H 9.035 0.02 1 198 . 39 LYS HA H 4.895 0.05 1 199 . 39 LYS C C 175.4 0.2 1 200 . 39 LYS CA C 54.6 0.2 1 201 . 39 LYS CB C 35.04 0.2 1 202 . 39 LYS N N 122 0.34 1 203 . 40 GLN H H 9.192 0.02 1 204 . 40 GLN HA H 4.24 0.05 1 205 . 40 GLN C C 175.9 0.2 1 206 . 40 GLN CA C 55.72 0.2 1 207 . 40 GLN CB C 29.2 0.2 1 208 . 40 GLN N N 126.5 0.34 1 209 . 41 ARG H H 8.806 0.02 1 210 . 41 ARG HA H 5 0.05 1 211 . 41 ARG CA C 56.1 0.2 1 212 . 41 ARG CB C 30.05 0.2 1 213 . 41 ARG N N 125.7 0.34 1 214 . 42 LYS H H 8.771 0.02 1 215 . 42 LYS HA H 4.316 0.05 1 216 . 42 LYS C C 176.1 0.2 1 217 . 42 LYS CA C 56.36 0.2 1 218 . 42 LYS CB C 32.7 0.2 1 219 . 42 LYS N N 123.3 0.34 1 220 . 43 SER H H 7.94 0.02 1 221 . 43 SER HA H 4.752 0.05 1 222 . 43 SER C C 176.27 0.2 1 223 . 43 SER CA C 57.15 0.2 1 224 . 43 SER CB C 64.56 0.2 1 225 . 43 SER N N 113.67 0.34 1 226 . 44 GLY H H 8.586 0.02 1 227 . 44 GLY HA2 H 4.176 0.05 2 228 . 44 GLY HA3 H 3.896 0.05 2 229 . 44 GLY C C 177.03 0.2 1 230 . 44 GLY CA C 45.12 0.2 1 231 . 44 GLY N N 109.2 0.34 1 232 . 45 ARG H H 8.596 0.02 1 233 . 45 ARG HA H 4.386 0.05 1 234 . 45 ARG CA C 57.21 0.2 1 235 . 45 ARG CB C 29.66 0.2 1 236 . 45 ARG N N 120 0.34 1 237 . 46 SER H H 8.375 0.02 1 238 . 46 SER HA H 4.503 0.05 1 239 . 46 SER C C 173.9 0.2 1 240 . 46 SER CA C 57.45 0.2 1 241 . 46 SER CB C 63.05 0.2 1 242 . 46 SER N N 114.31 0.34 1 243 . 47 ALA H H 7.76 0.02 1 244 . 47 ALA HA H 3.961 0.05 1 245 . 47 ALA C C 178 0.2 1 246 . 47 ALA CA C 53.06 0.2 1 247 . 47 ALA CB C 18.1 0.2 1 248 . 47 ALA N N 123.3 0.34 1 249 . 48 GLY H H 8.513 0.02 1 250 . 48 GLY HA2 H 4.15 0.05 2 251 . 48 GLY HA3 H 3.88 0.05 2 252 . 48 GLY C C 174 0.2 1 253 . 48 GLY CA C 44.93 0.2 1 254 . 48 GLY N N 109.2 0.34 1 255 . 49 LYS H H 8.02 0.02 1 256 . 49 LYS HA H 4.42 0.05 1 257 . 49 LYS C C 175.5 0.2 1 258 . 49 LYS CA C 55.68 0.2 1 259 . 49 LYS CB C 33.05 0.2 1 260 . 49 LYS N N 120 0.34 1 261 . 50 TYR H H 8.576 0.02 1 262 . 50 TYR HA H 5.007 0.05 1 263 . 50 TYR C C 175.1 0.2 1 264 . 50 TYR CA C 57.7 0.2 1 265 . 50 TYR CB C 40.8 0.2 1 266 . 50 TYR N N 118.2 0.34 1 267 . 51 ASP H H 9.002 0.02 1 268 . 51 ASP HA H 5.052 0.05 1 269 . 51 ASP CA C 53.5 0.2 1 270 . 51 ASP N N 120 0.34 1 271 . 52 VAL H H 7.56 0.02 1 272 . 52 VAL HA H 4.385 0.05 1 273 . 52 VAL C C 174.5 0.2 1 274 . 52 VAL CA C 62.1 0.2 1 275 . 52 VAL CB C 32.43 0.2 1 276 . 53 TYR H H 9 0.02 1 277 . 53 TYR HA H 5.305 0.05 1 278 . 53 TYR C C 174.5 0.2 1 279 . 53 TYR CA C 55.7 0.2 1 280 . 53 TYR CB C 39.7 0.2 1 281 . 53 TYR N N 123.3 0.34 1 282 . 54 LEU H H 9.125 0.02 1 283 . 54 LEU HA H 5.45 0.05 1 284 . 54 LEU C C 175.9 0.2 1 285 . 54 LEU CA C 53.3 0.2 1 286 . 54 LEU CB C 42.7 0.2 1 287 . 54 LEU N N 121.4 0.34 1 288 . 55 ILE H H 9.586 0.02 1 289 . 55 ILE HA H 5.054 0.05 1 290 . 55 ILE C C 176.1 0.2 1 291 . 55 ILE CA C 59.15 0.2 1 292 . 55 ILE CB C 37.83 0.2 1 293 . 55 ILE N N 123.3 0.34 1 294 . 56 ASN H H 8.477 0.02 1 295 . 56 ASN HA H 5.052 0.05 1 296 . 56 ASN CA C 50.8 0.2 1 297 . 56 ASN N N 125.88 0.34 1 298 . 57 PRO HA H 5.07 0.05 1 299 . 57 PRO C C 177.1 0.2 1 300 . 57 PRO CA C 64.74 0.2 1 301 . 57 PRO CB C 30.8 0.2 1 302 . 58 GLN H H 6.95 0.02 1 303 . 58 GLN HA H 4.294 0.05 1 304 . 58 GLN C C 176.2 0.2 1 305 . 58 GLN CA C 55.81 0.2 1 306 . 58 GLN CB C 27.77 0.2 1 307 . 58 GLN N N 112.39 0.34 1 308 . 59 GLY H H 8.168 0.02 1 309 . 59 GLY HA2 H 4.093 0.05 2 310 . 59 GLY HA3 H 4.268 0.05 2 311 . 59 GLY C C 172.9 0.2 1 312 . 59 GLY CA C 45.2 0.2 1 313 . 59 GLY N N 107.89 0.34 1 314 . 60 LYS H H 7.76 0.02 1 315 . 60 LYS HA H 3.98 0.05 1 316 . 60 LYS C C 173.2 0.2 1 317 . 60 LYS CA C 55.3 0.2 1 318 . 60 LYS CB C 31.59 0.2 1 319 . 60 LYS N N 122.66 0.34 1 320 . 61 ALA H H 7.92 0.02 1 321 . 61 ALA HA H 5.103 0.05 1 322 . 61 ALA C C 177 0.2 1 323 . 61 ALA CA C 50.2 0.2 1 324 . 61 ALA CB C 21.7 0.2 1 325 . 61 ALA N N 124.59 0.34 1 326 . 62 PHE H H 9.66 0.02 1 327 . 62 PHE HA H 4.922 0.05 1 328 . 62 PHE C C 175.8 0.2 1 329 . 62 PHE CA C 57 0.2 1 330 . 62 PHE CB C 42.3 0.2 1 331 . 62 PHE N N 119.5 0.34 1 332 . 63 ARG H H 9.41 0.02 1 333 . 63 ARG HA H 4.892 0.05 1 334 . 63 ARG C C 175.3 0.2 1 335 . 63 ARG CA C 55.09 0.2 1 336 . 63 ARG CB C 31.4 0.2 1 337 . 63 ARG N N 119.5 0.34 1 338 . 64 SER H H 7.302 0.02 1 339 . 64 SER HA H 4.884 0.05 1 340 . 64 SER C C 174.6 0.2 1 341 . 64 SER CA C 55.716 0.2 1 342 . 64 SER N N 111.1 0.34 1 343 . 65 LYS H H 8.515 0.02 1 344 . 65 LYS HA H 3.59 0.05 1 345 . 65 LYS C C 177.7 0.2 1 346 . 65 LYS CA C 59.18 0.2 1 347 . 65 LYS CB C 31.13 0.2 1 348 . 65 LYS N N 122 0.34 1 349 . 66 VAL H H 7.666 0.02 1 350 . 66 VAL HA H 3.67 0.05 1 351 . 66 VAL C C 178.7 0.2 1 352 . 66 VAL CA C 66 0.2 1 353 . 66 VAL CB C 31.1 0.2 1 354 . 66 VAL N N 116.24 0.34 1 355 . 67 GLU H H 7.424 0.02 1 356 . 67 GLU HA H 4.178 0.05 1 357 . 67 GLU C C 179.7 0.2 1 358 . 67 GLU CA C 58.87 0.2 1 359 . 67 GLU CB C 30 0.2 1 360 . 67 GLU N N 119.5 0.34 1 361 . 68 LEU H H 7.55 0.02 1 362 . 68 LEU HA H 3.423 0.05 1 363 . 68 LEU C C 177.1 0.2 1 364 . 68 LEU CA C 57.56 0.2 1 365 . 68 LEU CB C 41.99 0.2 1 366 . 68 LEU N N 120.7 0.34 1 367 . 69 ILE H H 8.428 0.02 1 368 . 69 ILE HA H 4.291 0.05 1 369 . 69 ILE C C 178.3 0.2 1 370 . 69 ILE CA C 65.56 0.2 1 371 . 69 ILE CB C 37.79 0.2 1 372 . 69 ILE N N 117.5 0.34 1 373 . 70 ALA H H 7.59 0.02 1 374 . 70 ALA HA H 4.202 0.05 1 375 . 70 ALA C C 180.4 0.2 1 376 . 70 ALA CA C 54.68 0.2 1 377 . 70 ALA CB C 17 0.2 1 378 . 70 ALA N N 119.5 0.34 1 379 . 71 TYR H H 7.79 0.02 1 380 . 71 TYR HA H 4.43 0.05 1 381 . 71 TYR C C 176.9 0.2 1 382 . 71 TYR CA C 61.16 0.2 1 383 . 71 TYR CB C 38.54 0.2 1 384 . 71 TYR N N 119.5 0.34 1 385 . 72 PHE H H 8.786 0.02 1 386 . 72 PHE HA H 4.457 0.05 1 387 . 72 PHE C C 179.4 0.2 1 388 . 72 PHE CA C 58.069 0.2 1 389 . 72 PHE N N 118.2 0.34 1 390 . 73 GLU H H 8.374 0.02 1 391 . 73 GLU HA H 4.128 0.05 1 392 . 73 GLU C C 178.8 0.2 1 393 . 73 GLU CA C 58.7 0.2 1 394 . 73 GLU CB C 28.8 0.2 1 395 . 73 GLU N N 117.53 0.34 1 396 . 74 LYS H H 7.885 0.02 1 397 . 74 LYS HA H 4.116 0.05 1 398 . 74 LYS C C 179 0.2 1 399 . 74 LYS CA C 58.7 0.2 1 400 . 74 LYS CB C 31.7 0.2 1 401 . 74 LYS N N 120 0.34 1 402 . 75 VAL H H 8.02 0.02 1 403 . 75 VAL HA H 4.259 0.05 1 404 . 75 VAL C C 177 0.2 1 405 . 75 VAL CA C 61.67 0.2 1 406 . 75 VAL CB C 31 0.2 1 407 . 75 VAL N N 110.5 0.34 1 408 . 76 GLY H H 7.8 0.02 1 409 . 76 GLY HA2 H 4.2 0.05 2 410 . 76 GLY HA3 H 3.9 0.05 2 411 . 76 GLY C C 174.1 0.2 1 412 . 76 GLY CA C 46.46 0.2 1 413 . 76 GLY N N 111.1 0.34 1 414 . 77 ASP H H 8.08 0.02 1 415 . 77 ASP HA H 4.785 0.05 1 416 . 77 ASP C C 176.6 0.2 1 417 . 77 ASP CA C 53.495 0.2 1 418 . 77 ASP CB C 41 0.2 1 419 . 77 ASP N N 119.45 0.34 1 420 . 78 THR H H 8.425 0.02 1 421 . 78 THR HA H 4.5 0.05 1 422 . 78 THR C C 175.1 0.2 1 423 . 78 THR CA C 60.66 0.2 1 424 . 78 THR CB C 68.6 0.2 1 425 . 78 THR N N 115.5 0.34 1 426 . 79 SER H H 8.674 0.02 1 427 . 79 SER HA H 4.28 0.05 1 428 . 79 SER C C 174.2 0.2 1 429 . 79 SER CA C 60.05 0.2 1 430 . 79 SER CB C 63.94 0.2 1 431 . 79 SER N N 118.167 0.34 1 432 . 80 LEU H H 7.66 0.02 1 433 . 80 LEU HA H 4.399 0.05 1 434 . 80 LEU C C 174.6 0.2 1 435 . 80 LEU CA C 53.4 0.2 1 436 . 80 LEU CB C 43.4 0.2 1 437 . 80 LEU N N 122.66 0.34 1 438 . 81 ASP H H 8.84 0.02 1 439 . 81 ASP HA H 4.99 0.05 1 440 . 81 ASP CA C 50.2 0.2 1 441 . 81 ASP N N 122.66 0.34 1 442 . 82 PRO C C 177.5 0.2 1 443 . 82 PRO CA C 64.63 0.2 1 444 . 82 PRO CB C 31.9 0.2 1 445 . 83 ASN H H 8.879 0.02 1 446 . 83 ASN HA H 4.549 0.05 1 447 . 83 ASN C C 176.25 0.2 1 448 . 83 ASN CA C 54.99 0.2 1 449 . 83 ASN CB C 37.67 0.2 1 450 . 83 ASN N N 114.3 0.34 1 451 . 84 ASP H H 8.381 0.02 1 452 . 84 ASP HA H 4.55 0.05 1 453 . 84 ASP C C 174.9 0.2 1 454 . 84 ASP CA C 54.84 0.2 1 455 . 84 ASP CB C 39.7 0.2 1 456 . 84 ASP N N 118.8 0.34 1 457 . 85 PHE H H 7.15 0.02 1 458 . 85 PHE HA H 3.994 0.05 1 459 . 85 PHE C C 173.6 0.2 1 460 . 85 PHE CA C 57.375 0.2 1 461 . 85 PHE CB C 38.57 0.2 1 462 . 85 PHE N N 118.8 0.34 1 463 . 86 ASP H H 8.91 0.02 1 464 . 86 ASP HA H 4.565 0.05 1 465 . 86 ASP C C 176 0.2 1 466 . 86 ASP CA C 53.25 0.2 1 467 . 86 ASP CB C 40.65 0.2 1 468 . 86 ASP N N 124 0.34 1 469 . 87 PHE H H 9.14 0.02 1 470 . 87 PHE HA H 4.389 0.05 1 471 . 87 PHE C C 175.5 0.2 1 472 . 87 PHE CA C 58.66 0.2 1 473 . 87 PHE CB C 39.04 0.2 1 474 . 87 PHE N N 124.59 0.34 1 475 . 88 THR H H 9.09 0.02 1 476 . 88 THR HA H 4.498 0.05 1 477 . 88 THR C C 176.6 0.2 1 478 . 88 THR CA C 61.93 0.2 1 479 . 88 THR CB C 70.3 0.2 1 480 . 88 THR N N 113 0.34 1 481 . 89 VAL H H 8.98 0.02 1 482 . 89 VAL HA H 4.741 0.05 1 483 . 89 VAL C C 177.05 0.2 1 484 . 89 VAL CA C 66.69 0.2 1 485 . 89 VAL N N 123.3 0.34 1 486 . 90 THR H H 7.89 0.02 1 487 . 90 THR HA H 4.26 0.05 1 488 . 90 THR C C 175 0.2 1 489 . 90 THR CA C 61.75 0.2 1 490 . 90 THR CB C 69.56 0.2 1 491 . 90 THR N N 105.37 0.34 1 492 . 91 GLY H H 7.5 0.02 1 493 . 91 GLY HA2 H 4.323 0.05 2 494 . 91 GLY HA3 H 3.941 0.05 2 495 . 91 GLY C C 177.34 0.2 1 496 . 91 GLY CA C 44.64 0.2 1 497 . 91 GLY N N 110.45 0.34 1 498 . 92 ARG H H 9.1 0.02 1 499 . 92 ARG C C 178.05 0.2 1 500 . 92 ARG CA C 56.28 0.2 1 501 . 92 ARG N N 122 0.34 1 502 . 93 GLY H H 8.518 0.02 1 503 . 93 GLY HA2 H 4.195 0.05 2 504 . 93 GLY HA3 H 3.911 0.05 2 505 . 93 GLY C C 173.77 0.2 1 506 . 93 GLY CA C 44.7 0.2 1 507 . 93 GLY N N 108.8 0.34 1 508 . 94 SER H H 8.196 0.02 1 509 . 94 SER HA H 4.682 0.05 1 510 . 94 SER CA C 56.16 0.2 1 511 . 94 SER N N 116.24 0.34 1 512 . 95 PRO C C 177.28 0.2 1 513 . 95 PRO CA C 63.44 0.2 1 514 . 95 PRO CB C 31.3 0.2 1 515 . 96 SER H H 8.337 0.02 1 516 . 96 SER HA H 4.411 0.05 1 517 . 96 SER C C 174.69 0.2 1 518 . 96 SER CA C 58.3 0.2 1 519 . 96 SER CB C 63.3 0.2 1 520 . 96 SER N N 114.3 0.34 1 521 . 97 ARG H H 8.459 0.02 1 522 . 97 ARG HA H 4.31 0.05 1 523 . 97 ARG C C 176.24 0.2 1 524 . 97 ARG CA C 55.9 0.2 1 525 . 97 ARG CB C 30.3 0.2 1 526 . 97 ARG N N 122 0.34 1 527 . 98 ARG H H 8.4 0.02 1 528 . 98 ARG HA H 4.327 0.05 1 529 . 98 ARG C C 176.22 0.2 1 530 . 98 ARG CA C 56 0.2 1 531 . 98 ARG CB C 32.42 0.2 1 532 . 98 ARG N N 121 0.34 1 533 . 99 GLU H H 8.401 0.02 1 534 . 99 GLU HA H 4.549 0.05 1 535 . 99 GLU C C 175.86 0.2 1 536 . 99 GLU CA C 56.08 0.2 1 537 . 99 GLU CB C 32.38 0.2 1 538 . 99 GLU N N 118.2 0.34 1 539 . 100 GLN H H 8.115 0.02 1 540 . 100 GLN HA H 4.616 0.05 1 541 . 100 GLN C C 175.63 0.2 1 542 . 100 GLN CA C 55.44 0.2 1 543 . 100 GLN CB C 28.82 0.2 1 544 . 100 GLN N N 116.2 0.34 1 545 . 101 ARG H H 8.416 0.02 1 546 . 101 ARG HA H 4.744 0.05 1 547 . 101 ARG CA C 53.57 0.2 1 548 . 101 ARG N N 122.6 0.34 1 549 . 103 PRO C C 176.88 0.2 1 550 . 103 PRO CA C 62.27 0.2 1 551 . 103 PRO CB C 31.51 0.2 1 552 . 104 LYS H H 8.39 0.02 1 553 . 104 LYS HA H 4.994 0.05 1 554 . 104 LYS C C 176.63 0.2 1 555 . 104 LYS CA C 56.02 0.2 1 556 . 104 LYS CB C 28.84 0.2 1 557 . 104 LYS N N 121 0.34 1 558 . 105 LYS H H 8.348 0.02 1 559 . 105 LYS HA H 4.221 0.05 1 560 . 105 LYS C C 176.09 0.2 1 561 . 105 LYS CA C 55.9 0.2 1 562 . 105 LYS CB C 32.813 0.2 1 563 . 105 LYS N N 122.6 0.34 1 564 . 106 ALA H H 8.379 0.02 1 565 . 106 ALA HA H 4.287 0.05 1 566 . 106 ALA CA C 52.007 0.2 1 567 . 106 ALA N N 125.875 0.34 1 568 . 107 LYS H H 8.394 0.02 1 569 . 107 LYS HA H 4.33 0.05 1 570 . 107 LYS CA C 55.77 0.2 1 571 . 107 LYS CB C 32.44 0.2 1 572 . 107 LYS N N 120.7 0.34 1 573 . 108 SER H H 8.524 0.02 1 574 . 108 SER HA H 4.756 0.05 1 575 . 108 SER CA C 56.18 0.2 1 576 . 108 SER N N 118.8 0.34 1 577 . 109 PRO C C 176.18 0.2 1 578 . 109 PRO CA C 62.36 0.2 1 579 . 109 PRO CB C 33.74 0.2 1 580 . 110 LYS H H 8.619 0.02 1 581 . 110 LYS HA H 4.734 0.05 1 582 . 110 LYS C C 176.48 0.2 1 583 . 110 LYS CA C 56.72 0.2 1 584 . 110 LYS CB C 29.84 0.2 1 585 . 110 LYS N N 121.4 0.34 1 586 . 111 SER H H 8.077 0.02 1 587 . 111 SER HA H 4.78 0.05 1 588 . 111 SER CA C 56.57 0.2 1 589 . 111 SER N N 120.7 0.34 1 590 . 112 PRO C C 177.12 0.2 1 591 . 112 PRO CA C 63.3 0.2 1 592 . 112 PRO CB C 31.4 0.2 1 593 . 113 GLY H H 8.487 0.02 1 594 . 113 GLY HA2 H 4.429 0.05 2 595 . 113 GLY HA3 H 3.938 0.05 2 596 . 113 GLY C C 174.2 0.2 1 597 . 113 GLY CA C 45.04 0.2 1 598 . 113 GLY N N 108.53 0.34 1 599 . 114 SER H H 8.269 0.02 1 600 . 114 SER HA H 4.788 0.05 1 601 . 114 SER C C 177.21 0.2 1 602 . 114 SER CA C 58.21 0.2 1 603 . 114 SER CB C 63.6 0.2 1 604 . 114 SER N N 115 0.34 1 605 . 115 GLY H H 8.554 0.02 1 606 . 115 GLY HA2 H 4.775 0.05 2 607 . 115 GLY HA3 H 3.989 0.05 2 608 . 115 GLY C C 174.23 0.2 1 609 . 115 GLY CA C 45.3 0.2 1 610 . 115 GLY N N 110.5 0.34 1 611 . 116 ARG H H 8.285 0.02 1 612 . 116 ARG HA H 4.76 0.05 1 613 . 116 ARG C C 177 0.2 1 614 . 116 ARG CA C 55.87 0.2 1 615 . 116 ARG N N 120 0.34 1 616 . 117 GLY H H 8.492 0.02 1 617 . 117 GLY HA2 H 4.31 0.05 2 618 . 117 GLY HA3 H 3.89 0.05 2 619 . 117 GLY C C 173.17 0.2 1 620 . 117 GLY CA C 44.88 0.2 1 621 . 117 GLY N N 109.5 0.34 1 622 . 118 ARG H H 7.912 0.02 1 623 . 118 ARG HA H 4.6 0.05 1 624 . 118 ARG C C 176.28 0.2 1 625 . 118 ARG CA C 55.61 0.2 1 626 . 118 ARG N N 115 0.34 1 627 . 119 GLY H H 8.269 0.02 1 628 . 119 GLY C C 173.22 0.2 1 629 . 119 GLY CA C 45.18 0.2 1 630 . 119 GLY N N 108.5 0.34 1 631 . 120 ARG H H 7.942 0.02 1 632 . 120 ARG CA C 53.41 0.2 1 633 . 120 ARG N N 119.45 0.34 1 634 . 121 PRO C C 177.02 0.2 1 635 . 121 PRO CA C 62.85 0.2 1 636 . 121 PRO CB C 31.16 0.2 1 637 . 122 LYS H H 8.55 0.02 1 638 . 122 LYS HA H 4.384 0.05 1 639 . 122 LYS C C 177.09 0.2 1 640 . 122 LYS CA C 56.48 0.2 1 641 . 122 LYS CB C 32.48 0.2 1 642 . 122 LYS N N 121.4 0.34 1 643 . 123 GLY H H 8.529 0.02 1 644 . 123 GLY HA2 H 4.256 0.05 2 645 . 123 GLY HA3 H 4.001 0.05 2 646 . 123 GLY C C 174.18 0.2 1 647 . 123 GLY CA C 45.1 0.2 1 648 . 123 GLY N N 110.5 0.34 1 649 . 124 SER H H 8.25 0.02 1 650 . 124 SER HA H 4.78 0.05 1 651 . 124 SER C C 174.02 0.2 1 652 . 124 SER CA C 58.06 0.2 1 653 . 124 SER CB C 64.23 0.2 1 654 . 124 SER N N 114.96 0.34 1 655 . 125 GLY H H 8.158 0.02 1 656 . 125 GLY HA2 H 3.757 0.05 1 657 . 125 GLY HA3 H 3.757 0.05 1 658 . 125 GLY CA C 46.07 0.2 1 659 . 125 GLY N N 116.24 0.34 1 stop_ save_