data_4749 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; NMR structure of a DNA three-way junction ; _BMRB_accession_number 4749 _BMRB_flat_file_name bmr4749.str _Entry_type new _Submission_date 2000-06-01 _Accession_date 2000-06-01 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thiviyanathan Varatharasa . . 2 Luxon B. A. . 3 Leontis Neocles B. . 4 Donne D. . . 5 Gorenstein D. G. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 3 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 282 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2010-07-14 update BMRB 'update DNA residue label to two-letter code' 2000-06-16 original author 'original release' stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Hybrid-Hybrid matrix structural refinement of a DNA three-way junction from 3D NOESY-NOES ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 99410888 _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thiviyanathan Varatharasa . . 2 Luxon B. A. . 3 Leontis Neocles B. . 4 Donne D. . . 5 Gorenstein D. G. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_volume 14 _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 209 _Page_last 221 _Year 1999 _Details . loop_ _Keyword Three-Way-Junction 'Unpaired bases' DNA stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref1 _Saveframe_category citation _Citation_full '"J. Biomolecular NMR, (1999), 14: 209-221"' _Citation_title 'Hybrid-hybrid matrix structural refinement of a DNA three-way junction from 3D NOESY-NOESY.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10481274 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thiviyanathan V . . 2 Luxon 'B A' A. . 3 Leontis 'N B' B. . 4 Illangasekare N . . 5 Donne 'D G' G. . 6 Gorenstein 'D G' G. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 14 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 209 _Page_last 221 _Year 1999 _Details ; Homonuclear 3D NOESY-NOESY has shown great promise for the structural refinement of large biomolecules. A computationally efficient hybrid-hybrid relaxation matrix refinement methodology, using 3D NOESY-NOESY data, was used to refine the structure of a DNA three-way junction having two unpaired bases at the branch point of the junction. The NMR data and the relaxation matrix refinement confirm that the DNA three-way junction exists in a folded conformation with two of the helical stems stacked upon each other. The third unstacked stem extends away from the junction, forming an acute angle (approximately 60 degrees) with the stacked stems. The two unpaired bases are stacked upon each other and are exposed to the solvent. Helical parameters for the bases in all three strands show slight deviations from typical values expected for right-handed B-form DNA. Inter-nucleotide imino-imino NOEs between the bases at the branch point of the junction show that the junction region is well defined. The helical stems show mobility (+/- 20 degrees) indicating dynamic processes around the junction region. The unstacked helical stem adjacent to the unpaired bases shows greater mobility compared to the other two stems. The results from this study indicate that the 3D hybrid-hybrid matrix MORASS refinement methodology, by combining the spectral dispersion of 3D NOESY-NOESY and the computational efficiency of 2D refinement programs, provides an accurate and robust means for structure determination of large biomolecules. Our results also indicate that the 3D MORASS method gives higher quality structures compared to the 2D complete relaxation matrix refinement method. ; save_ ################################## # Molecular system description # ################################## save_system_twj _Saveframe_category molecular_system _Mol_system_name 'DNA THREE-WAY JUNCTION' _Abbreviation_common twj _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'twj 1' $twj_1 'twj 2' $twj_2 'twj 3' $twj_3 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_twj_1 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class DNA _Name_common 'DNA Three Way Junction' _Abbreviation_common TWJ _Molecular_mass . _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 10 _Mol_residue_sequence GCTGCCACCG loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 1 DG 2 2 DC 3 3 DT 4 4 DG 5 5 DC 6 6 DC 7 7 DA 8 8 DC 9 9 DC 10 10 DG stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date . save_ save_twj_2 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class DNA _Name_common 'DNA Three Way Junction' _Abbreviation_common TWJ _Molecular_mass . _Mol_thiol_state 'not present' _Details . _Residue_count 10 _Mol_residue_sequence CGGTGCGTCC loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 11 DC 2 12 DG 3 13 DG 4 14 DT 5 15 DG 6 16 DC 7 17 DG 8 18 DT 9 19 DC 10 20 DC stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date . save_ save_twj_3 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class DNA _Name_common 'DNA Three Way Junction' _Abbreviation_common TWJ _Molecular_mass . _Mol_thiol_state 'not present' _Details . _Residue_count 12 _Mol_residue_sequence GGACGTCGCAGC loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 21 DG 2 22 DG 3 23 DA 4 24 DC 5 25 DG 6 26 DT 7 27 DC 8 28 DG 9 29 DC 10 30 DA 11 31 DG 12 32 DC stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date . save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $twj_1 . . unclassified . . . $twj_2 . . unclassified . . . $twj_3 . . unclassified . . . stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $twj_1 'chemical synthesis' . . . . . $twj_2 'chemical synthesis' . . . . . $twj_3 'chemical synthesis' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $twj_1 2 mM . $twj_2 2 mM . $twj_3 2 mM . EDTA 0.5 mM . sodium_phosphate 100 mM . MgCl2 10 mM . NaCl 100 mM . stop_ save_ ############################ # Computer software used # ############################ save_MORASS _Saveframe_category software _Name MORASS _Version 2.5 loop_ _Task 'iterative matrix relaxation' stop_ _Details 'Meadows, R., Post, C.B., Luxon, B.A., & Gorenstein, D.G.' save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model 'Unity plus' _Field_strength 750 _Details . save_ ############################# # NMR applied experiments # ############################# save_2D_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _Sample_label . save_ save_3D_NOESY-NOESY_2 _Saveframe_category NMR_applied_experiment _Experiment_name '3D NOESY-NOESY' _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name '3D NOESY-NOESY' _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.8 0.1 n/a temperature 301 1 K 'ionic strength' 100 . mM stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis HOD H 1 protons ppm 4.76 internal direct spherical internal parallel_to_Bo stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shift1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'twj 1' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 DG H8 H 8.00 0.01 1 2 . 1 DG H1' H 6.02 0.01 1 3 . 1 DG H2' H 2.70 0.01 1 4 . 1 DG H2'' H 2.80 0.01 1 5 . 1 DG H3' H 4.88 0.01 1 6 . 1 DG H4' H 4.31 0.01 1 7 . 1 DG H5' H 3.78 0.01 2 8 . 1 DG H5'' H 3.78 0.01 2 9 . 2 DC H41 H 8.35 0.01 2 10 . 2 DC H42 H 6.65 0.01 2 11 . 2 DC H5 H 5.40 0.01 1 12 . 2 DC H6 H 7.57 0.01 1 13 . 2 DC H1' H 6.13 0.01 1 14 . 2 DC H2' H 2.19 0.01 1 15 . 2 DC H2'' H 2.58 0.01 1 16 . 2 DC H3' H 4.87 0.01 1 17 . 2 DC H4' H 4.31 0.01 1 18 . 2 DC H5' H 4.26 0.01 2 19 . 2 DC H5'' H 4.15 0.01 2 20 . 3 DT H3 H 14.07 0.01 1 21 . 3 DT H6 H 7.42 0.01 1 22 . 3 DT H71 H 1.71 0.01 1 23 . 3 DT H72 H 1.71 0.01 1 24 . 3 DT H73 H 1.71 0.01 1 25 . 3 DT H1' H 5.87 0.01 1 26 . 3 DT H2' H 2.18 0.01 1 27 . 3 DT H2'' H 2.53 0.01 1 28 . 3 DT H3' H 4.94 0.01 1 29 . 3 DT H4' H 4.21 0.01 1 30 . 3 DT H5' H 4.19 0.01 1 31 . 4 DG H1 H 12.95 0.01 1 32 . 4 DG H8 H 7.97 0.01 1 33 . 4 DG H1' H 6.01 0.01 1 34 . 4 DG H2' H 2.69 0.01 1 35 . 4 DG H2'' H 2.81 0.01 1 36 . 4 DG H3' H 5.05 0.01 1 37 . 4 DG H4' H 4.47 0.01 1 38 . 5 DC H41 H 8.39 0.01 2 39 . 5 DC H42 H 6.67 0.01 2 40 . 5 DC H5 H 5.46 0.01 1 41 . 5 DC H6 H 7.52 0.01 1 42 . 5 DC H1' H 6.10 0.01 1 43 . 5 DC H2' H 2.24 0.01 1 44 . 5 DC H2'' H 2.47 0.01 1 45 . 5 DC H3' H 4.87 0.01 1 46 . 5 DC H4' H 4.28 0.01 1 47 . 5 DC H5' H 4.23 0.01 1 48 . 5 DC H5'' H 4.19 0.01 1 49 . 6 DC H41 H 8.23 0.01 2 50 . 6 DC H42 H 6.54 0.01 2 51 . 6 DC H5 H 5.45 0.01 1 52 . 6 DC H6 H 7.49 0.01 1 53 . 6 DC H1' H 5.54 0.01 1 54 . 6 DC H2' H 1.92 0.01 1 55 . 6 DC H2'' H 2.35 0.01 1 56 . 6 DC H3' H 4.85 0.01 1 57 . 6 DC H4' H 4.24 0.01 1 58 . 7 DA H2 H 7.75 0.01 1 59 . 7 DA H8 H 8.35 0.01 1 60 . 7 DA H1' H 6.28 0.01 1 61 . 7 DA H2' H 2.77 0.01 1 62 . 7 DA H2'' H 2.94 0.01 1 63 . 7 DA H3' H 5.06 0.01 1 64 . 7 DA H4' H 4.46 0.01 1 65 . 7 DA H5' H 4.20 0.01 2 66 . 7 DA H5'' H 4.15 0.01 2 67 . 8 DC H41 H 8.14 0.01 2 68 . 8 DC H42 H 6.58 0.01 2 69 . 8 DC H5 H 5.36 0.01 1 70 . 8 DC H6 H 7.36 0.01 1 71 . 8 DC H1' H 5.88 0.01 1 72 . 8 DC H2' H 2.04 0.01 1 73 . 8 DC H2'' H 2.42 0.01 1 74 . 8 DC H3' H 4.82 0.01 1 75 . 8 DC H4' H 4.32 0.01 1 76 . 8 DC H5' H 4.22 0.01 1 77 . 8 DC H5'' H 4.11 0.01 1 78 . 9 DC H41 H 8.63 0.01 2 79 . 9 DC H42 H 6.97 0.01 2 80 . 9 DC H5 H 5.65 0.01 1 81 . 9 DC H6 H 7.48 0.01 1 82 . 9 DC H1' H 5.74 0.01 1 83 . 9 DC H2' H 2.00 0.01 1 84 . 9 DC H2'' H 2.38 0.01 1 85 . 9 DC H3' H 4.86 0.01 1 86 . 9 DC H4' H 4.15 0.01 1 87 . 10 DG H8 H 7.98 0.01 1 88 . 10 DG H1' H 6.22 0.01 1 89 . 10 DG H2' H 2.67 0.01 1 90 . 10 DG H2'' H 2.44 0.01 1 91 . 10 DG H3' H 4.73 0.01 1 92 . 10 DG H4' H 4.39 0.01 1 93 . 10 DG H5' H 4.14 0.01 2 94 . 10 DG H5'' H 4.09 0.01 2 stop_ save_ save_shift2 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'twj 2' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 DC H5 H 5.93 0.01 1 2 . 1 DC H6 H 7.65 0.01 1 3 . 1 DC H1' H 5.81 0.01 1 4 . 1 DC H2' H 1.92 0.01 1 5 . 1 DC H2'' H 2.44 0.01 1 6 . 1 DC H3' H 4.73 0.01 1 7 . 1 DC H4' H 4.10 0.01 1 8 . 1 DC H5' H 3.76 0.01 2 9 . 2 DG H1 H 13.17 0.01 1 10 . 2 DG H8 H 7.96 0.01 1 11 . 2 DG H1' H 5.69 0.01 1 12 . 2 DG H2' H 2.74 0.01 1 13 . 2 DG H2'' H 2.81 0.01 1 14 . 2 DG H3' H 5.06 0.01 1 15 . 2 DG H4' H 4.37 0.01 1 16 . 3 DG H1 H 12.92 0.01 1 17 . 3 DG H8 H 7.80 0.01 1 18 . 3 DG H1' H 6.07 0.01 1 19 . 3 DG H2' H 2.62 0.01 1 20 . 3 DG H2'' H 2.84 0.01 1 21 . 3 DG H3' H 5.01 0.01 1 22 . 3 DG H4' H 4.49 0.01 1 23 . 3 DG H5' H 4.26 0.01 2 24 . 4 DT H3 H 13.75 0.01 1 25 . 4 DT H6 H 7.22 0.01 1 26 . 4 DT H71 H 1.45 0.01 1 27 . 4 DT H72 H 1.45 0.01 1 28 . 4 DT H73 H 1.45 0.01 1 29 . 4 DT H1' H 5.92 0.01 1 30 . 4 DT H2' H 2.16 0.01 1 31 . 4 DT H2'' H 2.56 0.01 1 32 . 4 DT H3' H 4.96 0.01 1 33 . 4 DT H4' H 4.30 0.01 1 34 . 5 DG H1 H 12.75 0.01 1 35 . 5 DG H8 H 7.89 0.01 1 36 . 5 DG H1' H 6.08 0.01 1 37 . 5 DG H2' H 2.71 0.01 1 38 . 5 DG H2'' H 2.71 0.01 1 39 . 5 DG H3' H 5.01 0.01 1 40 . 5 DG H4' H 4.48 0.01 1 41 . 5 DG H5' H 4.21 0.01 2 42 . 5 DG H5'' H 4.17 0.01 2 43 . 6 DC H5 H 5.48 0.01 1 44 . 6 DC H6 H 7.50 0.01 1 45 . 6 DC H1' H 5.93 0.01 1 46 . 6 DC H2' H 2.20 0.01 1 47 . 6 DC H2'' H 2.58 0.01 1 48 . 6 DC H3' H 4.97 0.01 1 49 . 6 DC H4' H 4.15 0.01 1 50 . 6 DC H5' H 4.13 0.01 2 51 . 7 DG H1 H 12.90 0.01 1 52 . 7 DG H8 H 8.03 0.01 1 53 . 7 DG H1' H 6.17 0.01 1 54 . 7 DG H2' H 2.71 0.01 1 55 . 7 DG H2'' H 2.95 0.01 1 56 . 7 DG H3' H 5.05 0.01 1 57 . 7 DG H4' H 4.47 0.01 1 58 . 7 DG H5' H 4.24 0.01 1 59 . 8 DT H3 H 13.79 0.01 1 60 . 8 DT H6 H 7.35 0.01 1 61 . 8 DT H71 H 1.52 0.01 1 62 . 8 DT H72 H 1.52 0.01 1 63 . 8 DT H73 H 1.52 0.01 1 64 . 8 DT H1' H 6.25 0.01 1 65 . 8 DT H2' H 2.17 0.01 1 66 . 8 DT H2'' H 2.60 0.01 1 67 . 8 DT H3' H 4.94 0.01 1 68 . 8 DT H4' H 4.21 0.01 1 69 . 9 DC H41 H 8.54 0.01 2 70 . 9 DC H42 H 7.00 0.01 2 71 . 9 DC H5 H 5.79 0.01 1 72 . 9 DC H6 H 7.64 0.01 1 73 . 9 DC H1' H 6.14 0.01 1 74 . 9 DC H2' H 2.27 0.01 1 75 . 9 DC H2'' H 2.53 0.01 1 76 . 9 DC H3' H 4.90 0.01 1 77 . 9 DC H4' H 4.26 0.01 1 78 . 9 DC H5' H 4.16 0.01 2 79 . 10 DC H5 H 5.75 0.01 1 80 . 10 DC H6 H 7.66 0.01 1 81 . 10 DC H1' H 6.27 0.01 1 82 . 10 DC H2' H 2.33 0.01 1 83 . 10 DC H2'' H 2.33 0.01 1 84 . 10 DC H3' H 4.61 0.01 1 85 . 10 DC H4' H 4.09 0.01 1 86 . 10 DC H5' H 4.13 0.01 2 stop_ save_ save_shift3 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'twj 3' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 DG H8 H 7.88 0.01 1 2 . 1 DG H1' H 5.68 0.01 1 3 . 1 DG H2' H 2.52 0.01 1 4 . 1 DG H2'' H 2.71 0.01 1 5 . 1 DG H3' H 4.86 0.01 1 6 . 1 DG H4' H 4.40 0.01 1 7 . 1 DG H5' H 3.76 0.01 2 8 . 1 DG H5'' H 3.72 0.01 2 9 . 2 DG H1 H 13.00 0.01 1 10 . 2 DG H8 H 7.90 0.01 1 11 . 2 DG H1' H 5.59 0.01 1 12 . 2 DG H2' H 2.75 0.01 1 13 . 2 DG H2'' H 2.84 0.01 1 14 . 2 DG H3' H 5.07 0.01 1 15 . 2 DG H4' H 4.41 0.01 1 16 . 2 DG H5' H 4.30 0.01 2 17 . 2 DG H5'' H 4.22 0.01 2 18 . 3 DA H2 H 8.00 0.01 1 19 . 3 DA H8 H 8.27 0.01 1 20 . 3 DA H1' H 6.28 0.01 1 21 . 3 DA H2' H 2.77 0.01 1 22 . 3 DA H2'' H 2.93 0.01 1 23 . 3 DA H3' H 5.12 0.01 1 24 . 3 DA H4' H 4.52 0.01 1 25 . 3 DA H5' H 4.23 0.01 2 26 . 3 DA H5'' H 4.22 0.01 2 27 . 4 DC H41 H 8.27 0.01 2 28 . 4 DC H42 H 6.54 0.01 2 29 . 4 DC H5 H 5.34 0.01 1 30 . 4 DC H6 H 7.28 0.01 1 31 . 4 DC H1' H 5.67 0.01 1 32 . 4 DC H2' H 1.97 0.01 1 33 . 4 DC H2'' H 2.36 0.01 1 34 . 4 DC H3' H 4.83 0.01 1 35 . 4 DC H4' H 4.29 0.01 1 36 . 4 DC H5' H 4.15 0.01 2 37 . 5 DG H8 H 8.02 0.01 1 38 . 5 DG H1' H 6.14 0.01 1 39 . 5 DG H2' H 2.71 0.01 1 40 . 5 DG H2'' H 2.71 0.01 1 41 . 5 DG H3' H 5.02 0.01 1 42 . 6 DT H6 H 7.74 0.01 1 43 . 6 DT H71 H 1.98 0.01 1 44 . 6 DT H72 H 1.98 0.01 1 45 . 6 DT H73 H 1.98 0.01 1 46 . 6 DT H1' H 5.92 0.01 1 47 . 6 DT H2' H 2.53 0.01 2 48 . 6 DT H2'' H 2.66 0.01 2 49 . 6 DT H3' H 4.94 0.01 1 50 . 7 DC H5 H 5.69 0.01 1 51 . 7 DC H6 H 7.55 0.01 1 52 . 7 DC H1' H 5.91 0.01 1 53 . 7 DC H2' H 2.00 0.01 1 54 . 7 DC H2'' H 2.38 0.01 1 55 . 7 DC H3' H 4.71 0.01 1 56 . 8 DG H1 H 13.14 0.01 1 57 . 8 DG H8 H 7.76 0.01 1 58 . 8 DG H1' H 6.09 0.01 1 59 . 8 DG H2' H 2.68 0.01 1 60 . 8 DG H2'' H 2.73 0.01 1 61 . 8 DG H3' H 5.04 0.01 1 62 . 8 DG H4' H 4.38 0.01 1 63 . 8 DG H5' H 4.21 0.01 2 64 . 9 DC H41 H 8.46 0.01 2 65 . 9 DC H42 H 6.58 0.01 2 66 . 9 DC H5 H 5.47 0.01 1 67 . 9 DC H6 H 7.49 0.01 1 68 . 9 DC H1' H 5.61 0.01 1 69 . 9 DC H2' H 2.09 0.01 1 70 . 9 DC H2'' H 2.42 0.01 1 71 . 9 DC H3' H 4.87 0.01 1 72 . 9 DC H4' H 4.24 0.01 1 73 . 9 DC H5' H 4.21 0.01 2 74 . 9 DC H5'' H 4.08 0.01 2 75 . 10 DA H2 H 7.76 0.01 1 76 . 10 DA H8 H 8.23 0.01 1 77 . 10 DA H1' H 6.09 0.01 1 78 . 10 DA H2' H 2.76 0.01 1 79 . 10 DA H2'' H 2.92 0.01 1 80 . 10 DA H3' H 5.08 0.01 1 81 . 10 DA H4' H 4.44 0.01 1 82 . 10 DA H5' H 4.18 0.01 2 83 . 10 DA H5'' H 4.10 0.01 2 84 . 11 DG H1 H 13.01 0.01 1 85 . 11 DG H8 H 7.71 0.01 1 86 . 11 DG H1' H 5.89 0.01 1 87 . 11 DG H2' H 2.53 0.01 1 88 . 11 DG H2'' H 2.69 0.01 1 89 . 11 DG H3' H 5.00 0.01 1 90 . 11 DG H4' H 4.41 0.01 1 91 . 11 DG H5' H 4.21 0.01 2 92 . 11 DG H5'' H 4.11 0.01 2 93 . 12 DC H41 H 8.16 0.01 2 94 . 12 DC H42 H 6.52 0.01 2 95 . 12 DC H5 H 5.41 0.01 1 96 . 12 DC H6 H 7.44 0.01 1 97 . 12 DC H1' H 6.19 0.01 1 98 . 12 DC H2' H 2.17 0.01 1 99 . 12 DC H2'' H 2.23 0.01 1 100 . 12 DC H3' H 4.51 0.01 1 101 . 12 DC H4' H 4.09 0.01 1 102 . 12 DC H5' H 4.26 0.01 2 stop_ save_