data_4774 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Three-dimensional Structure of the Histidine-containing Phosphocarrier Protein (Hpr) from Enterococcus faecalis in Solution ; _BMRB_accession_number 4774 _BMRB_flat_file_name bmr4774.str _Entry_type original _Submission_date 2000-07-03 _Accession_date 2000-07-05 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Maurer Till . . 2 Doker Rolf . . 3 Gorler Adrian . . 4 Hengstenberg Wolfgang . . 5 Kalbitzer Hans R. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 487 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2001-05-03 original author . stop_ _Original_release_date 2001-05-03 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Three-dimensional Structure of the Histidine-containing Phosphocarrier Protein (Hpr) from Enterococcus faecalis in Solution ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 21099332 _PubMed_ID 11168402 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Maurer Till . . 2 Doker Rolf . . 3 Gorler Adrian . . 4 Hengstenberg Wolfgang . . 5 Kalbitzer Hans R. . stop_ _Journal_abbreviation 'Eur. J. Biochem.' _Journal_name_full 'European Journal of Biochemistry' _Journal_volume 268 _Journal_issue 3 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 635 _Page_last 644 _Year 2001 _Details . loop_ _Keyword 'HISTIDINE CONTAINING PHOSPHCARRIER PROTEIN' 'ENTEROCOCCUS FAECALIS' NMR PROTEIN stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_2 _Saveframe_category citation _Citation_full ; Jia Z, Vandonselaar M, Quail JW, Delbaere LT., Active-centre torsion-angle strain revealed in 1.6 A-resolution structure of histidine-containing phosphocarrier protein. Nature. 1993 Jan 7;361(6407):94-7. PMID: 8421502; UI: 93133294 ; _Citation_title 'Active-centre torsion-angle strain revealed in 1.6 A-resolution structure of histidine-containing phosphocarrier protein.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8421502 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Jia Z. . . 2 Vandonselaar M. . . 3 Quail 'J. W.' W. . 4 Delbaere 'L. T.' T. . stop_ _Journal_abbreviation Nature _Journal_name_full Nature _Journal_volume 361 _Journal_issue 6407 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 94 _Page_last 97 _Year 1993 _Details ; The histidine-containing phosphocarrier protein (HPr) is a central component of the phosphoenolpyruvate: sugar phosphotransferase system that transports carbohydrates across the cell membrane of bacteria. A typical phosphotransfer sequence is phosphoenolpyruvate-->enzyme I-->HPr-->enzyme II/IIIsugar-->sugar. This is thermodynamically favourable owing to the participation of the high-energy phosphoenolpyruvate. We report here the structure of HPr from Streptococcus faecalis determined at 1.6 A resolution. Remarkable disallowed Ramachandran torsion angles at the active centre, revealed by the X-ray structure, demonstrate a unique example of torsion-angle strain that is probably directly involved in protein function. During phosphorylation, the active-centre torsion-angle strain should facilitate the phosphotransfer reaction by lowering the activation-energy barrier. A recently reported Bacillus subtilis HPr structure, which represents the phosphorylated state of HPr with no torsion-angle strain, provides direct evidence supporting our hypothesis that torsion-angle strain plays a direct part in the function of HPr. An HPr phosphotransfer cycling mechanism is proposed, based primarily on the structures of HPr and other phosphotransferase system proteins. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Hahmann M, Maurer T, Lorenz M, Hengstenberg W, Glaser S, Kalbitzer HR., Structural studies of histidine-containing phosphocarrier protein from Enterococcus faecalis. Eur J Biochem. 1998 Feb 15;252(1):51-8. PMID: 9523711; UI: 98181885 ; _Citation_title 'Structural studies of histidine-containing phosphocarrier protein from Enterococcus faecalis.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9523711 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Hahmann M. . . 2 Maurer T. . . 3 Lorenz M. . . 4 Hengstenberg W. . . 5 Glaser S. . . 6 Kalbitzer 'H. R.' R. . stop_ _Journal_abbreviation 'Eur. J. Biochem.' _Journal_name_full 'European journal of biochemistry / FEBS' _Journal_volume 252 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 51 _Page_last 58 _Year 1998 _Details ; Based on the complete sequential assignment of the 1H-NMR spectrum by multidimensional NMR techniques the secondary structure and the local geometry of the active site of histidine-containing phosphocarrier protein (HPr) from Enterococcus faecalis were elucidated. We present a comparative analysis of the active site in the seven known structures of HPr from different organisms determined by NMR or X-ray crystallography. In catalysis, HPr is phosphorylated at the ring N61 of His15. No general agreement exists in literature regarding the structure of the active-centre loop. In the crystal structure of HPr from E. faecalis, a torsion strain of the backbone at position 16 was observed, which was assumed to be important to the catalytic mechanism. Coupling constants were determined in order to calculate phi angles to establish whether there are strained torsion angles in HPr from E. faecalis in the solution state. The evaluation of data obtained indicate a stable and well-defined structure of HPr from E. faecalis, with an overall fold similar to that found in HPr from other bacteria. We find that in the active-site region there are relatively large variations in local geometry between the evaluated structures. In HPr from E. faecalis, a particularly detailed view of the phosphate-binding His15 and residues in close spatial proximity was obtained by determination of coupling constants obtained from the double-quantum-filtered COSY spectrum. Our data indicate that in aqueous solution, in the dominant conformational state there is no torsion strain of the backbone at position 16, as observed in the crystal state. The maximum population of a strained conformation in solution can be estimated to be smaller than 23%. The analysis of the data suggests that the active-centre loop is able to adopt different conformations in solution. A similar observation was made for HPr from E. faecalis phosphorylated at its regulatory site (Ser46). 31P-NMR shows that phosphorylated HPr exists in two conformational substates with nearly equal populations. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Jia Z, Vandonselaar M, Hengstenberg W, Quail JW, Delbaere LT., The 1.6 A structure of histidine-containing phosphotransfer protein HPr from Streptococcus faecalis. J Mol Biol. 1994 Mar 11;236(5):1341-55. PMID: 8126724; UI: 94172632 ; _Citation_title 'The 1.6 A structure of histidine-containing phosphotransfer protein HPr from Streptococcus faecalis.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8126724 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Jia Z. . . 2 Vandonselaar M. . . 3 Hengstenberg W. . . 4 Quail 'J. W.' W. . 5 Delbaere 'L. T.' T. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 236 _Journal_issue 5 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1341 _Page_last 1355 _Year 1994 _Details ; The histidine-containing phosphocarrier protein (HPr) is a central component of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) that transports carbohydrates across the cell membrane of bacteria. The three-dimensional structure of Gram-positive Streptococcus faecalis HPr has been determined using the method of multiple isomorphous replacement. The R factor for all data is 0.156 for S. faecalis HPr at 1.6 A resolution with very good geometry. The overall folding topology of HPr is a classical open-faced beta-sandwich, consisting of four antiparallel beta-strands and three alpha-helices. Remarkable disallowed Ramachandran torsion angles of Ala16 at the active center, revealed by the X-ray structure of S. faecalis HPr, demonstrate a unique example of torsion-angle strain that is likely involved directly in protein function. A brief report concerning the torsion-angle strain has been presented recently. A newly-determined pH 7.0 structure is shown to have the same open conformation of the active center and the same torsion-angle strain at Ala16, suggesting that pH is not responsible for the structural observations. The current structure suggests a role for residues 12 and 51 in HPr's function, since they are involved in the active center through direct and indirect hydrogen-bonding interactions with the imidazole ring of His15. It is found that Ser46, the regulatory site in HPr from Gram-positive bacteria, N-caps the minor alpha-B helix and is also involved in the Asn43-Ser46 beta-turn. This finding, in conjunction with the proposed routes of communication between the regulatory site Ser46 and the active center in S. faecalis HPr, provides new insight into the understanding of how Ser46 might function. The putative involvement of the C-terminal alpha-carboxyl group and the related Gly67-Glu70 reverse beta-turn with respect to the function of HPr are described. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; GUNTERT, P., MUMENTHALER, C. & WUTHRICH, K. (1997). Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283-298. ; _Citation_title 'Torsion angle dynamics for NMR structure calculation with the new program DYANA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9367762 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P. . . 2 Mumenthaler C. . . 3 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 273 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 283 _Page_last 298 _Year 1997 _Details ; The new program DYANA (DYnamics Algorithm for Nmr Applications) for efficient calculation of three-dimensional protein and nucleic acid structures from distance constraints and torsion angle constraints collected by nuclear magnetic resonance (NMR) experiments performs simulated annealing by molecular dynamics in torsion angle space and uses a fast recursive algorithm to integrate the equations of motions. Torsion angle dynamics can be more efficient than molecular dynamics in Cartesian coordinate space because of the reduced number of degrees of freedom and the concomitant absence of high-frequency bond and angle vibrations, which allows for the use of longer time-steps and/or higher temperatures in the structure calculation. It also represents a significant advance over the variable target function method in torsion angle space with the REDAC strategy used by the predecessor program DIANA. DYANA computation times per accepted conformer in the "bundle" used to represent the NMR structure compare favorably with those of other presently available structure calculation algorithms, and are of the order of 160 seconds for a protein of 165 amino acid residues when using a DEC Alpha 8400 5/300 computer. Test calculations starting from conformers with random torsion angle values further showed that DYANA is capable of efficient calculation of high-quality protein structures with up to 400 amino acid residues, and of nucleic acid structures. ; save_ ################################## # Molecular system description # ################################## save_system_HPr _Saveframe_category molecular_system _Mol_system_name 'PHOSPHOCARRIER PROTEIN HPR' _Abbreviation_common HPr _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label HPr $HPr stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Biological_function 'PHOSPHATE GROUP TRANSLOCATION IN CARBOHYDRATE TRANSPORT' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_HPr _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'HISTIDINE CONTAINING PHOSPHCARRIER PROTEIN' _Abbreviation_common HPr _Molecular_mass . _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 89 _Mol_residue_sequence ; MEKKEFHIVAETGIHARPAT LLVQTASKFNSDINLEYKGK SVNLKSIMGVMSLGVGQGSD VTITVDGADEAEGMAAIVET LQKEGLAEQ ; loop_ _Residue_seq_code _Residue_label 1 MET 2 GLU 3 LYS 4 LYS 5 GLU 6 PHE 7 HIS 8 ILE 9 VAL 10 ALA 11 GLU 12 THR 13 GLY 14 ILE 15 HIS 16 ALA 17 ARG 18 PRO 19 ALA 20 THR 21 LEU 22 LEU 23 VAL 24 GLN 25 THR 26 ALA 27 SER 28 LYS 29 PHE 30 ASN 31 SER 32 ASP 33 ILE 34 ASN 35 LEU 36 GLU 37 TYR 38 LYS 39 GLY 40 LYS 41 SER 42 VAL 43 ASN 44 LEU 45 LYS 46 SER 47 ILE 48 MET 49 GLY 50 VAL 51 MET 52 SER 53 LEU 54 GLY 55 VAL 56 GLY 57 GLN 58 GLY 59 SER 60 ASP 61 VAL 62 THR 63 ILE 64 THR 65 VAL 66 ASP 67 GLY 68 ALA 69 ASP 70 GLU 71 ALA 72 GLU 73 GLY 74 MET 75 ALA 76 ALA 77 ILE 78 VAL 79 GLU 80 THR 81 LEU 82 GLN 83 LYS 84 GLU 85 GLY 86 LEU 87 ALA 88 GLU 89 GLN stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-10-26 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1FU0 "Crystal Structure Analysis Of The Phospho-Serine 46 Hpr From Enterococcus Faecalis" 97.75 87 98.85 98.85 1.86e-53 PDB 1PTF "The 1.6 Angstroms Structure Of Histidine-Containing Phosphotransfer Protein Hpr From Streptococcus Faecalis" 98.88 88 100.00 100.00 6.99e-55 PDB 1QFR "Nmr Solution Structure Of Phosphocarrier Protein Hpr From Enterococcus Faecalis" 98.88 89 100.00 100.00 6.67e-55 EMBL CAA79533 "HPr [Enterococcus faecalis]" 98.88 88 100.00 100.00 6.99e-55 EMBL CBL32713 "Phosphotransferase System HPr (HPr) Family [Enterococcus sp. 7L76]" 98.88 88 100.00 100.00 6.99e-55 EMBL CCO71634 "phosphocarrier protein HPr [Enterococcus faecalis str. Symbioflor 1]" 98.88 88 100.00 100.00 6.99e-55 GB AAO80530 "phosphocarrier protein HPr [Enterococcus faecalis V583]" 98.88 88 100.00 100.00 6.99e-55 GB ADX79343 "phosphocarrier protein HPr [Enterococcus faecalis 62]" 98.88 88 100.00 100.00 6.99e-55 GB AEA93134 "PTS family porter, phosphocarrier protein HPR [Enterococcus faecalis OG1RF]" 98.88 88 100.00 100.00 6.99e-55 GB AFO43418 "phosphocarrier protein HPr [Enterococcus faecalis D32]" 98.88 88 100.00 100.00 6.99e-55 GB AHI39812 "Phosphocarrier protein HPr [Enterococcus faecalis DENG1]" 98.88 88 100.00 100.00 6.99e-55 REF NP_814460 "phosphocarrier protein HPr [Enterococcus faecalis V583]" 98.88 88 100.00 100.00 6.99e-55 REF WP_002355551 "MULTISPECIES: phosphocarrier protein HPr [Enterococcus]" 98.88 88 100.00 100.00 6.99e-55 REF WP_002358685 "phosphocarrier protein HPr [Enterococcus faecalis]" 98.88 88 98.86 100.00 2.06e-54 REF WP_002388527 "phosphocarrier protein HPr [Enterococcus faecalis]" 98.88 88 98.86 98.86 1.38e-53 REF WP_010776971 "phosphocarrier protein HPr [Enterococcus faecalis]" 98.88 88 98.86 98.86 6.81e-54 SP P07515 "RecName: Full=Phosphocarrier protein HPr; AltName: Full=Histidine-containing protein [Enterococcus faecalis V583]" 98.88 88 100.00 100.00 6.99e-55 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species _Strain $HPr . 1351 Eubacteria Firmicutes Enterococcus faecalis 26487 stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $HPr 'purified from the natural source' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $HPr 5.0 mM . stop_ save_ ############################ # Computer software used # ############################ save_DYANA _Saveframe_category software _Name DYANA _Version 1.5 loop_ _Task 'STRUCTURE CALCULATION, REFINEMENT' stop_ _Details . _Citation_label $ref_5 save_ save_XWINNMR _Saveframe_category software _Name XWINNMR _Version . loop_ _Task 'Data processing' stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 500 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DMX _Field_strength 800 _Details . save_ ############################# # NMR applied experiments # ############################# save_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _Sample_label $sample_1 save_ save_COSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name COSY _Sample_label $sample_1 save_ save_TOCSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _Sample_label $sample_1 save_ save_NOESY-TOCSY_4 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY-TOCSY _Sample_label $sample_1 save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name COSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 7.4 0.2 n/a temperature 298 3 K pressure 1 . atm stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis DSS H 1 'methyl protons' ppm 0.0 internal direct . . . stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chemical_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Experiment_label NOESY COSY TOCSY NOESY-TOCSY stop_ loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name HPr _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 MET HA H 4.45 0.05 1 2 . 1 MET HB3 H 2.23 0.05 1 3 . 1 MET HB2 H 2.29 0.05 1 4 . 1 MET HG3 H 2.13 0.05 1 5 . 1 MET HG2 H 2.13 0.05 1 6 . 2 GLU HA H 4.54 0.05 1 7 . 2 GLU H H 9.16 0.05 1 8 . 2 GLU HB3 H 1.63 0.05 1 9 . 2 GLU HB2 H 1.63 0.05 1 10 . 2 GLU HG3 H 1.96 0.05 1 11 . 2 GLU HG2 H 1.96 0.05 1 12 . 3 LYS HA H 5.22 0.05 1 13 . 3 LYS H H 8.63 0.05 1 14 . 3 LYS HB3 H 1.56 0.05 1 15 . 3 LYS HB2 H 1.66 0.05 1 16 . 3 LYS HG3 H 1.31 0.05 1 17 . 3 LYS HG2 H 1.13 0.05 1 18 . 3 LYS HD3 H 1.11 0.05 1 19 . 3 LYS HD2 H 1.11 0.05 1 20 . 3 LYS HE2 H 2.92 0.05 1 21 . 3 LYS HE3 H 2.92 0.05 1 22 . 4 LYS H H 8.69 0.05 1 23 . 4 LYS HA H 4.34 0.05 1 24 . 4 LYS HB3 H 1.28 0.05 1 25 . 4 LYS HB2 H 1.20 0.05 1 26 . 4 LYS HG3 H 1.45 0.05 1 27 . 4 LYS HG2 H 1.45 0.05 1 28 . 4 LYS HD3 H 1.23 0.05 1 29 . 4 LYS HD2 H 1.23 0.05 1 30 . 4 LYS HE3 H 2.87 0.05 1 31 . 4 LYS HE2 H 2.92 0.05 1 32 . 5 GLU H H 7.89 0.05 1 33 . 5 GLU HA H 5.12 0.05 1 34 . 5 GLU HB3 H 1.71 0.05 1 35 . 5 GLU HB2 H 2.19 0.05 1 36 . 5 GLU HG3 H 2.06 0.05 1 37 . 5 GLU HG2 H 1.89 0.05 1 38 . 6 PHE H H 9.14 0.05 1 39 . 6 PHE HA H 4.82 0.05 1 40 . 6 PHE HB3 H 2.34 0.05 1 41 . 6 PHE HB2 H 2.77 0.05 1 42 . 6 PHE HD1 H 6.95 0.05 1 43 . 6 PHE HD2 H 6.94 0.05 1 44 . 6 PHE HE1 H 7.03 0.05 1 45 . 6 PHE HE2 H 7.03 0.05 1 46 . 6 PHE HZ H 7.02 0.05 1 47 . 7 HIS H H 9.10 0.05 1 48 . 7 HIS HA H 5.40 0.05 1 49 . 7 HIS HB3 H 3.24 0.05 1 50 . 7 HIS HB2 H 2.92 0.05 1 51 . 7 HIS HD2 H 6.73 0.05 1 52 . 7 HIS HE1 H 8.00 0.05 1 53 . 8 ILE H H 9.10 0.05 1 54 . 8 ILE HA H 4.57 0.05 1 55 . 8 ILE HG12 H 1.68 0.05 1 56 . 8 ILE HG13 H 1.74 0.05 1 57 . 8 ILE HB H 2.15 0.05 1 58 . 8 ILE HG2 H 0.76 0.05 1 59 . 8 ILE HD1 H 0.40 0.05 1 60 . 9 VAL H H 8.29 0.05 1 61 . 9 VAL HA H 4.42 0.05 1 62 . 9 VAL HB H 2.30 0.05 1 63 . 9 VAL HG1 H 0.98 0.05 1 64 . 9 VAL HG2 H 0.67 0.05 1 65 . 10 ALA H H 6.63 0.05 1 66 . 10 ALA HA H 4.27 0.05 1 67 . 10 ALA HB H 1.45 0.05 1 68 . 11 GLU H H 9.02 0.05 1 69 . 11 GLU HA H 3.82 0.05 1 70 . 11 GLU HB3 H 2.04 0.05 1 71 . 11 GLU HB2 H 2.02 0.05 1 72 . 11 GLU HG3 H 2.31 0.05 1 73 . 11 GLU HG2 H 2.31 0.05 1 74 . 12 THR H H 7.70 0.05 1 75 . 12 THR HA H 3.47 0.05 1 76 . 12 THR HB H 4.25 0.05 1 77 . 12 THR HG2 H 1.41 0.05 1 78 . 13 GLY H H 7.70 0.05 1 79 . 13 GLY HA3 H 3.02 0.05 1 80 . 13 GLY HA2 H 4.20 0.05 1 81 . 14 ILE H H 8.06 0.05 1 82 . 14 ILE HA H 3.87 0.05 1 83 . 14 ILE HG12 H 1.26 0.05 1 84 . 14 ILE HG13 H 1.26 0.05 1 85 . 14 ILE HB H 1.81 0.05 1 86 . 14 ILE HG2 H 0.49 0.05 1 87 . 14 ILE HD1 H 0.59 0.05 1 88 . 15 HIS H H 6.97 0.05 1 89 . 15 HIS HA H 4.56 0.05 1 90 . 15 HIS HB2 H 3.17 0.05 1 91 . 15 HIS HB3 H 2.98 0.05 1 92 . 15 HIS HD2 H 7.07 0.05 1 93 . 15 HIS HE1 H 7.61 0.05 1 94 . 16 ALA H H 8.23 0.05 1 95 . 16 ALA HA H 3.99 0.05 1 96 . 16 ALA HB H 1.47 0.05 1 97 . 17 ARG H H 8.32 0.05 1 98 . 17 ARG HA H 4.23 0.05 1 99 . 17 ARG HB3 H 1.89 0.05 1 100 . 17 ARG HB2 H 1.89 0.05 1 101 . 17 ARG HG3 H 1.62 0.05 1 102 . 17 ARG HG2 H 1.62 0.05 1 103 . 17 ARG HD3 H 3.66 0.05 1 104 . 17 ARG HD2 H 3.14 0.05 1 105 . 18 PRO HA H 3.84 0.05 1 106 . 18 PRO HB3 H 1.96 0.05 1 107 . 18 PRO HB2 H 2.01 0.05 1 108 . 18 PRO HG3 H 2.10 0.05 1 109 . 18 PRO HG2 H 1.96 0.05 1 110 . 18 PRO HD2 H 3.39 0.05 1 111 . 18 PRO HD3 H 3.50 0.05 1 112 . 19 ALA H H 7.89 0.05 1 113 . 19 ALA HA H 4.04 0.05 1 114 . 19 ALA HB H 1.12 0.05 1 115 . 20 THR H H 7.88 0.05 1 116 . 20 THR HA H 3.65 0.05 1 117 . 20 THR HB H 4.33 0.05 1 118 . 20 THR HG2 H 1.12 0.05 1 119 . 21 LEU H H 7.82 0.05 1 120 . 21 LEU HA H 3.99 0.05 1 121 . 21 LEU HB3 H 1.57 0.05 1 122 . 21 LEU HB2 H 1.63 0.05 1 123 . 21 LEU HG H 2.10 0.05 1 124 . 21 LEU HD1 H 0.73 0.05 1 125 . 21 LEU HD2 H 0.73 0.05 1 126 . 22 LEU H H 8.22 0.05 1 127 . 22 LEU HA H 3.91 0.05 1 128 . 22 LEU HB3 H 1.49 0.05 1 129 . 22 LEU HB2 H 1.49 0.05 1 130 . 22 LEU HG H 1.68 0.05 1 131 . 22 LEU HD1 H 0.61 0.05 1 132 . 22 LEU HD2 H 0.66 0.05 1 133 . 23 VAL H H 8.14 0.05 1 134 . 23 VAL HA H 4.13 0.05 1 135 . 23 VAL HB H 1.83 0.05 1 136 . 23 VAL HG1 H 0.93 0.05 1 137 . 23 VAL HG2 H 0.74 0.05 1 138 . 24 GLN H H 8.41 0.05 1 139 . 24 GLN HA H 3.98 0.05 1 140 . 24 GLN HB3 H 2.47 0.05 1 141 . 24 GLN HB2 H 2.24 0.05 1 142 . 24 GLN HG3 H 2.52 0.05 1 143 . 24 GLN HG2 H 2.52 0.05 1 144 . 25 THR H H 8.10 0.05 1 145 . 25 THR HA H 3.84 0.05 1 146 . 25 THR HB H 4.32 0.05 1 147 . 25 THR HG2 H 1.17 0.05 1 148 . 26 ALA H H 8.41 0.05 1 149 . 26 ALA HA H 3.86 0.05 1 150 . 26 ALA HB H 1.27 0.05 1 151 . 27 SER H H 8.11 0.05 1 152 . 27 SER HA H 3.89 0.05 1 153 . 27 SER HB3 H 4.15 0.05 1 154 . 27 SER HB2 H 4.56 0.05 1 155 . 28 LYS H H 7.33 0.05 1 156 . 28 LYS HA H 3.87 0.05 1 157 . 28 LYS HB3 H 1.36 0.05 1 158 . 28 LYS HB2 H 1.36 0.05 1 159 . 28 LYS HG3 H 1.39 0.05 1 160 . 28 LYS HG2 H 1.39 0.05 1 161 . 28 LYS HD3 H 1.19 0.05 1 162 . 28 LYS HD2 H 1.52 0.05 1 163 . 28 LYS HE2 H 2.62 0.05 1 164 . 28 LYS HE3 H 2.62 0.05 1 165 . 29 PHE H H 7.32 0.05 1 166 . 29 PHE HA H 4.45 0.05 1 167 . 29 PHE HB2 H 3.29 0.05 1 168 . 29 PHE HB3 H 2.61 0.05 1 169 . 29 PHE HD1 H 7.25 0.05 1 170 . 29 PHE HD2 H 7.25 0.05 1 171 . 29 PHE HE1 H 7.11 0.05 1 172 . 29 PHE HE2 H 7.11 0.05 1 173 . 29 PHE HZ H 7.05 0.05 1 174 . 30 ASN H H 11.4 0.05 1 175 . 30 ASN HA H 4.50 0.05 1 176 . 30 ASN HB3 H 2.70 0.05 1 177 . 30 ASN HB2 H 2.70 0.05 1 178 . 31 SER H H 8.95 0.05 1 179 . 31 SER HA H 4.27 0.05 1 180 . 31 SER HB3 H 3.10 0.05 1 181 . 31 SER HB2 H 3.39 0.05 1 182 . 32 ASP H H 8.38 0.05 1 183 . 32 ASP HA H 4.62 0.05 1 184 . 32 ASP HB3 H 2.63 0.05 1 185 . 32 ASP HB2 H 2.63 0.05 1 186 . 33 ILE H H 9.43 0.05 1 187 . 33 ILE HA H 5.19 0.05 1 188 . 33 ILE HG12 H 0.74 0.05 1 189 . 33 ILE HG13 H 0.74 0.05 1 190 . 33 ILE HB H 1.46 0.05 1 191 . 33 ILE HG2 H 0.81 0.05 1 192 . 33 ILE HD1 H 0.88 0.05 1 193 . 34 ASN H H 8.73 0.05 1 194 . 34 ASN HA H 5.69 0.05 1 195 . 34 ASN HB3 H 2.32 0.05 1 196 . 34 ASN HB2 H 2.44 0.05 1 197 . 35 LEU H H 9.08 0.05 1 198 . 35 LEU HA H 5.05 0.05 1 199 . 35 LEU HB3 H 1.54 0.05 1 200 . 35 LEU HB2 H 1.38 0.05 1 201 . 35 LEU HG H 1.39 0.05 1 202 . 35 LEU HD1 H 0.69 0.05 1 203 . 35 LEU HD2 H 0.69 0.05 1 204 . 36 GLU H H 9.45 0.05 1 205 . 36 GLU HA H 5.53 0.05 1 206 . 36 GLU HB3 H 2.06 0.05 1 207 . 36 GLU HB2 H 1.95 0.05 1 208 . 36 GLU HG3 H 1.67 0.05 1 209 . 36 GLU HG2 H 1.67 0.05 1 210 . 37 TYR H H 8.79 0.05 1 211 . 37 TYR HA H 5.08 0.05 1 212 . 37 TYR HB3 H 2.67 0.05 1 213 . 37 TYR HB2 H 2.94 0.05 1 214 . 37 TYR HD1 H 7.24 0.05 1 215 . 37 TYR HD2 H 7.24 0.05 1 216 . 37 TYR HE1 H 6.94 0.05 1 217 . 37 TYR HE2 H 6.94 0.05 1 218 . 38 LYS H H 9.35 0.05 1 219 . 38 LYS HA H 3.69 0.05 1 220 . 38 LYS HB3 H 1.68 0.05 1 221 . 38 LYS HB2 H 1.68 0.05 1 222 . 38 LYS HG3 H 1.07 0.05 1 223 . 38 LYS HG2 H 1.07 0.05 1 224 . 38 LYS HD3 H 1.40 0.05 1 225 . 38 LYS HD2 H 1.40 0.05 1 226 . 38 LYS HE2 H 2.93 0.05 1 227 . 38 LYS HE3 H 2.93 0.05 1 228 . 38 LYS HZ H 2.93 0.05 1 229 . 39 GLY H H 8.79 0.05 1 230 . 39 GLY HA3 H 3.99 0.05 1 231 . 39 GLY HA2 H 3.51 0.05 1 232 . 40 LYS H H 7.86 0.05 1 233 . 40 LYS HA H 4.52 0.05 1 234 . 40 LYS HB3 H 1.80 0.05 1 235 . 40 LYS HB2 H 1.80 0.05 1 236 . 40 LYS HG3 H 1.25 0.05 1 237 . 40 LYS HG2 H 1.25 0.05 1 238 . 40 LYS HD3 H 1.31 0.05 1 239 . 40 LYS HD2 H 1.31 0.05 1 240 . 40 LYS HE2 H 1.65 0.05 1 241 . 40 LYS HE3 H 1.65 0.05 1 242 . 41 SER H H 8.35 0.05 1 243 . 41 SER HA H 5.55 0.05 1 244 . 41 SER HB3 H 3.50 0.05 1 245 . 41 SER HB2 H 3.55 0.05 1 246 . 42 VAL H H 9.11 0.05 1 247 . 42 VAL HA H 4.63 0.05 1 248 . 42 VAL HB H 2.00 0.05 1 249 . 42 VAL HG1 H 0.88 0.05 1 250 . 42 VAL HG2 H 0.88 0.05 1 251 . 43 ASN H H 8.31 0.05 1 252 . 43 ASN HA H 4.79 0.05 1 253 . 43 ASN HB3 H 2.88 0.05 1 254 . 43 ASN HB2 H 2.88 0.05 1 255 . 44 LEU H H 8.89 0.05 1 256 . 44 LEU HA H 3.97 0.05 1 257 . 44 LEU HB2 H 1.36 0.05 1 258 . 44 LEU HB3 H 1.36 0.05 1 259 . 44 LEU HG H 1.82 0.05 1 260 . 44 LEU HD1 H 1.00 0.05 1 261 . 44 LEU HD2 H 0.76 0.05 1 262 . 45 LYS H H 7.95 0.05 1 263 . 45 LYS HA H 4.32 0.05 1 264 . 45 LYS HB3 H 1.86 0.05 1 265 . 45 LYS HB2 H 1.86 0.05 1 266 . 45 LYS HG3 H 1.59 0.05 1 267 . 45 LYS HG2 H 1.59 0.05 1 268 . 45 LYS HD3 H 1.70 0.05 1 269 . 45 LYS HD2 H 1.70 0.05 1 270 . 45 LYS HE2 H 2.04 0.05 1 271 . 45 LYS HE3 H 2.04 0.05 1 272 . 46 SER H H 7.60 0.05 1 273 . 46 SER HA H 4.73 0.05 1 274 . 46 SER HB3 H 4.23 0.05 1 275 . 46 SER HB2 H 3.78 0.05 1 276 . 47 ILE H H 9.01 0.05 1 277 . 47 ILE HA H 3.94 0.05 1 278 . 47 ILE HG12 H 1.34 0.05 1 279 . 47 ILE HG13 H 1.34 0.05 1 280 . 47 ILE HB H 1.81 0.05 1 281 . 47 ILE HG2 H 0.94 0.05 1 282 . 47 ILE HD1 H 0.80 0.05 1 283 . 48 MET H H 8.25 0.05 1 284 . 48 MET HA H 4.15 0.05 1 285 . 48 MET HB3 H 2.01 0.05 1 286 . 48 MET HB2 H 2.52 0.05 1 287 . 48 MET HG3 H 2.67 0.05 1 288 . 48 MET HG2 H 2.67 0.05 1 289 . 48 MET HE H 1.88 0.05 1 290 . 49 GLY H H 8.36 0.05 1 291 . 49 GLY HA3 H 4.10 0.05 1 292 . 49 GLY HA2 H 3.89 0.05 1 293 . 50 VAL H H 8.30 0.05 1 294 . 50 VAL HA H 3.42 0.05 1 295 . 50 VAL HB H 1.93 0.05 1 296 . 50 VAL HG1 H 1.02 0.05 1 297 . 50 VAL HG2 H 0.71 0.05 1 298 . 51 MET H H 8.33 0.05 1 299 . 51 MET HA H 4.24 0.05 1 300 . 51 MET HB3 H 2.12 0.05 1 301 . 51 MET HB2 H 1.92 0.05 1 302 . 51 MET HG3 H 2.67 0.05 1 303 . 51 MET HG2 H 2.58 0.05 1 304 . 51 MET HE H 1.90 0.05 1 305 . 52 SER H H 7.85 0.05 1 306 . 52 SER HA H 4.27 0.05 1 307 . 52 SER HB3 H 4.03 0.05 1 308 . 52 SER HB2 H 3.96 0.05 1 309 . 53 LEU H H 7.20 0.05 1 310 . 53 LEU HA H 4.17 0.05 1 311 . 53 LEU HB3 H 1.42 0.05 1 312 . 53 LEU HB2 H 1.47 0.05 1 313 . 53 LEU HG H 1.79 0.05 1 314 . 53 LEU HD1 H 0.86 0.05 1 315 . 53 LEU HD2 H 0.90 0.05 1 316 . 54 GLY H H 7.31 0.05 1 317 . 54 GLY HA2 H 3.85 0.05 1 318 . 54 GLY HA3 H 3.67 0.05 1 319 . 55 VAL H H 8.39 0.05 1 320 . 55 VAL HA H 2.84 0.05 1 321 . 55 VAL HB H 1.61 0.05 1 322 . 55 VAL HG1 H 0.42 0.05 1 323 . 55 VAL HG2 H 0.29 0.05 1 324 . 56 GLY H H 8.03 0.05 1 325 . 56 GLY HA3 H 4.28 0.05 1 326 . 56 GLY HA2 H 3.67 0.05 1 327 . 57 GLN H H 8.69 0.05 1 328 . 57 GLN HA H 3.52 0.05 1 329 . 57 GLN HB3 H 1.95 0.05 1 330 . 57 GLN HB2 H 1.85 0.05 1 331 . 57 GLN HG3 H 2.14 0.05 1 332 . 57 GLN HG2 H 2.14 0.05 1 333 . 58 GLY H H 8.82 0.05 1 334 . 58 GLY HA3 H 3.46 0.05 1 335 . 58 GLY HA2 H 4.12 0.05 1 336 . 59 SER H H 7.09 0.05 1 337 . 59 SER HA H 4.54 0.05 1 338 . 59 SER HB3 H 3.66 0.05 1 339 . 59 SER HB2 H 3.42 0.05 1 340 . 60 ASP H H 8.72 0.05 1 341 . 60 ASP HA H 5.88 0.05 1 342 . 60 ASP HB3 H 2.55 0.05 1 343 . 60 ASP HB2 H 2.73 0.05 1 344 . 61 VAL H H 9.07 0.05 1 345 . 61 VAL HA H 5.38 0.05 1 346 . 61 VAL HB H 2.25 0.05 1 347 . 61 VAL HG1 H 0.82 0.05 1 348 . 61 VAL HG2 H 0.73 0.05 1 349 . 62 THR H H 8.76 0.05 1 350 . 62 THR HA H 5.22 0.05 1 351 . 62 THR HB H 3.91 0.05 1 352 . 62 THR HG2 H 1.01 0.05 1 353 . 63 ILE H H 9.20 0.05 1 354 . 63 ILE HA H 5.22 0.05 1 355 . 63 ILE HG12 H 1.12 0.05 1 356 . 63 ILE HG13 H 0.74 0.05 1 357 . 63 ILE HB H 1.68 0.05 1 358 . 63 ILE HG2 H 0.75 0.05 1 359 . 63 ILE HD1 H 0.53 0.05 1 360 . 64 THR H H 8.68 0.05 1 361 . 64 THR HA H 5.25 0.05 1 362 . 64 THR HB H 4.08 0.05 1 363 . 64 THR HG2 H 1.05 0.05 1 364 . 65 VAL H H 9.07 0.05 1 365 . 65 VAL HA H 4.73 0.05 1 366 . 65 VAL HB H 1.86 0.05 1 367 . 65 VAL HG1 H 0.86 0.05 1 368 . 65 VAL HG2 H 1.56 0.05 1 369 . 66 ASP H H 8.85 0.05 1 370 . 66 ASP HA H 5.47 0.05 1 371 . 66 ASP HB3 H 2.88 0.05 1 372 . 66 ASP HB2 H 2.32 0.05 1 373 . 67 GLY H H 10.1 0.05 1 374 . 67 GLY HA3 H 3.90 0.05 1 375 . 67 GLY HA2 H 3.90 0.05 1 376 . 68 ALA H H 8.85 0.05 1 377 . 68 ALA HA H 4.05 0.05 1 378 . 68 ALA HB H 1.46 0.05 1 379 . 69 ASP H H 7.54 0.05 1 380 . 69 ASP HA H 4.93 0.05 1 381 . 69 ASP HB3 H 2.64 0.05 1 382 . 69 ASP HB2 H 3.42 0.05 1 383 . 70 GLU H H 7.13 0.05 1 384 . 70 GLU HA H 3.90 0.05 1 385 . 70 GLU HB3 H 2.12 0.05 1 386 . 70 GLU HB2 H 2.15 0.05 1 387 . 70 GLU HG3 H 2.43 0.05 1 388 . 70 GLU HG2 H 2.59 0.05 1 389 . 71 ALA H H 8.41 0.05 1 390 . 71 ALA HA H 4.06 0.05 1 391 . 71 ALA HB H 1.40 0.05 1 392 . 72 GLU H H 8.48 0.05 1 393 . 72 GLU HA H 3.90 0.05 1 394 . 72 GLU HB3 H 1.97 0.05 1 395 . 72 GLU HB2 H 2.29 0.05 1 396 . 72 GLU HG3 H 2.11 0.05 1 397 . 72 GLU HG2 H 2.11 0.05 1 398 . 73 GLY H H 8.61 0.05 1 399 . 73 GLY HA3 H 2.22 0.05 1 400 . 73 GLY HA2 H 1.53 0.05 1 401 . 74 MET H H 8.38 0.05 1 402 . 74 MET HA H 3.88 0.05 1 403 . 74 MET HB3 H 2.31 0.05 1 404 . 74 MET HB2 H 2.18 0.05 1 405 . 74 MET HG3 H 2.51 0.05 1 406 . 74 MET HG2 H 2.30 0.05 1 407 . 74 MET HE H 1.88 0.05 1 408 . 75 ALA H H 7.36 0.05 1 409 . 75 ALA HA H 3.94 0.05 1 410 . 75 ALA HB H 1.35 0.05 1 411 . 76 ALA H H 7.78 0.05 1 412 . 76 ALA HA H 4.16 0.05 1 413 . 76 ALA HB H 1.54 0.05 1 414 . 77 ILE H H 8.00 0.05 1 415 . 77 ILE HA H 3.39 0.05 1 416 . 77 ILE HG12 H 0.98 0.05 1 417 . 77 ILE HG13 H 1.52 0.05 1 418 . 77 ILE HB H 2.10 0.05 1 419 . 77 ILE HG2 H 0.56 0.05 1 420 . 77 ILE HD1 H 0.57 0.05 1 421 . 78 VAL H H 8.52 0.05 1 422 . 78 VAL HA H 3.22 0.05 1 423 . 78 VAL HB H 2.12 0.05 1 424 . 78 VAL HG1 H 1.16 0.05 1 425 . 78 VAL HG2 H 0.91 0.05 1 426 . 79 GLU H H 7.73 0.05 1 427 . 79 GLU HA H 4.06 0.05 1 428 . 79 GLU HB3 H 2.18 0.05 1 429 . 79 GLU HB2 H 2.09 0.05 1 430 . 79 GLU HG3 H 3.06 0.05 1 431 . 79 GLU HG2 H 3.06 0.05 1 432 . 80 THR H H 8.19 0.05 1 433 . 80 THR HA H 3.94 0.05 1 434 . 80 THR HB H 4.09 0.05 1 435 . 80 THR HG2 H 0.97 0.05 1 436 . 81 LEU H H 8.46 0.05 1 437 . 81 LEU HA H 3.65 0.05 1 438 . 81 LEU HB3 H 1.77 0.05 1 439 . 81 LEU HB2 H 1.77 0.05 1 440 . 81 LEU HG H 1.38 0.05 1 441 . 81 LEU HD1 H -0.4 0.05 1 442 . 81 LEU HD2 H 0.28 0.05 1 443 . 82 GLN H H 8.16 0.05 1 444 . 82 GLN HA H 4.39 0.05 1 445 . 82 GLN HB3 H 2.28 0.05 1 446 . 82 GLN HB2 H 2.28 0.05 1 447 . 82 GLN HG3 H 2.51 0.05 1 448 . 82 GLN HG2 H 2.51 0.05 1 449 . 83 LYS H H 9.10 0.05 1 450 . 83 LYS HA H 4.01 0.05 1 451 . 83 LYS HB3 H 2.06 0.05 1 452 . 83 LYS HB2 H 1.85 0.05 1 453 . 83 LYS HG3 H 1.65 0.05 1 454 . 83 LYS HG2 H 1.57 0.05 1 455 . 83 LYS HD3 H 1.71 0.05 1 456 . 83 LYS HD2 H 1.71 0.05 1 457 . 83 LYS HE3 H 2.98 0.05 1 458 . 83 LYS HE2 H 2.98 0.05 1 459 . 84 GLU H H 7.78 0.05 1 460 . 84 GLU HA H 4.37 0.05 1 461 . 84 GLU HB3 H 2.03 0.05 1 462 . 84 GLU HB2 H 1.70 0.05 1 463 . 84 GLU HG3 H 2.39 0.05 1 464 . 84 GLU HG2 H 2.27 0.05 1 465 . 85 GLY H H 7.81 0.05 1 466 . 85 GLY HA3 H 3.82 0.05 1 467 . 85 GLY HA2 H 3.83 0.05 1 468 . 86 LEU H H 8.10 0.05 1 469 . 86 LEU HA H 4.16 0.05 1 470 . 86 LEU HB3 H 1.83 0.05 1 471 . 86 LEU HB2 H 1.83 0.05 1 472 . 86 LEU HG H 1.51 0.05 1 473 . 86 LEU HD1 H 0.80 0.05 1 474 . 86 LEU HD2 H 0.66 0.05 1 475 . 87 ALA H H 7.32 0.05 1 476 . 87 ALA HA H 5.05 0.05 1 477 . 87 ALA HB H 1.38 0.05 1 478 . 88 GLU H H 8.59 0.05 1 479 . 88 GLU HA H 4.22 0.05 1 480 . 88 GLU HG2 H 1.95 0.05 1 481 . 88 GLU HG3 H 1.95 0.05 1 482 . 89 GLN H H 8.45 0.05 1 483 . 89 GLN HA H 4.19 0.05 1 484 . 89 GLN HB2 H 2.05 0.05 1 485 . 89 GLN HB3 H 2.02 0.05 1 486 . 89 GLN HG2 H 2.26 0.05 1 487 . 89 GLN HG3 H 2.36 0.05 1 stop_ save_