data_4820 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H and 13Ca Chemical Shift Assignments for the Pheromone Er-22 ; _BMRB_accession_number 4820 _BMRB_flat_file_name bmr4820.str _Entry_type original _Submission_date 2000-09-06 _Accession_date 2000-09-06 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Liu Aizhuo . . 2 Luginbuhl Peter . . 3 Zerbe Oliver . . 4 Luporini Pierangelo . . 5 Wuthrich Kurt . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 203 "13C chemical shifts" 37 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2001-01-29 original author . stop_ _Original_release_date 2001-01-29 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Letter to the Editor: NMR structure of the pheromone Er-22 from Euplotes raikovi ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Liu Aizhuo . . 2 Luginbuhl Peter . . 3 Zerbe Oliver . . 4 Ortenzi Claudio . . 5 Luporini Pierangelo . . 6 Wuthrich Kurt . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_volume 19 _Journal_issue 1 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 75 _Page_last 78 _Year 2001 _Details . save_ ####################################### # Cited references within the entry # ####################################### save_ref1 _Saveframe_category citation _Citation_full ; Guntert, Dotsch, Wider, Wuthrich (1992) J Biomol NMR 2, 619-629 ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref2 _Saveframe_category citation _Citation_full ; Bartels, Xia, Billeter, Guntert, Wuthrich (1995) J Biomol NMR 5, 1-10 ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref3 _Saveframe_category citation _Citation_full ; Guntert, Braun, Wuthrich (1991) J Mol Biol 217, 517-530 ; _Citation_title 'Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1847217 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Guntert P . . 2 Braun W . . 3 Wuthrich K . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 217 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 517 _Page_last 530 _Year 1991 _Details ; A novel procedure for efficient computation of three-dimensional protein structures from nuclear magnetic resonance (n.m.r.) data in solution is described, which is based on using the program DIANA in combination with the supporting programs CALIBA, HABAS and GLOMSA. The first part of this paper describes the new programs DIANA. CALIBA and GLOMSA. DIANA is a new, fully vectorized implementation of the variable target function algorithm for the computation of protein structures from n.m.r. data. Its main advantages, when compared to previously available programs using the variable target function algorithm, are a significant reduction of the computation time, and a novel treatment of experimental distance constraints involving diastereotopic groups of hydrogen atoms that were not individually assigned. CALIBA converts the measured nuclear Overhauser effects into upper distance limits and thus prepares the input for the previously described program HABAS and for DIANA. GLOMSA is used for obtaining individual assignments for pairs of diastereotopic substituents by comparison of the experimental constraints with preliminary results of the structure calculations. With its general outlay, the presently used combination of the four programs is particularly user-friendly. In the second part of the paper, initial results are presented on the influence of the novel DIANA treatment of diastereotopic protons on the quality of the structures obtained, and a systematic study of the central processing unit times needed for the same protein structure calculation on a range of different, commonly available computers is described. ; save_ save_ref4 _Saveframe_category citation _Citation_full ; Luginbuhl, Guntert, Billeter, Wuthrich (1996) J Biomol NMR 8, 136-146 ; _Citation_title 'The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8914272 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Luginbuhl P. . . 2 Guntert P. . . 3 Billeter M. . . 4 Wuethrich K. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 8 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 136 _Page_last 146 _Year 1996 _Details ; A new program for molecular dynamics (MD) simulation and energy refinement of biological macromolecules, OPAL, is introduced. Combined with the supporting program TRAJEC for the analysis of MD trajectories, OPAL affords high efficiency and flexibility for work with different force fields, and offers a user-friendly interface and extensive trajectory analysis capabilities. Salient features are computational speeds of up to 1.5 GFlops on vector supercomputers such as the NEC SX-3, ellipsoidal boundaries to reduce the system size for studies in explicit solvents, and natural treatment of the hydrostatic pressure. Practical applications of OPAL are illustrated with MD simulations of pure water, energy minimization of the NMR structure of the mixed disulfide of a mutant E. coli glutaredoxin with glutathione in different solvent models, and MD simulations of a small protein, pheromone Er-2, using either instantaneous or time-averaged NMR restraints, or no restraints. ; save_ ################################## # Molecular system description # ################################## save_system_Er-22 _Saveframe_category molecular_system _Mol_system_name 'Pheromone Er-22' _Abbreviation_common Er-22 _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label Er-22 $Er-22 stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all disulfide bound' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_Er-22 _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Pheromone Er-22' _Abbreviation_common Er-22 _Molecular_mass . _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 37 _Mol_residue_sequence ; DICDIAIAQCSLTLCQDCEN TPICELAVKGSCPPPWS ; loop_ _Residue_seq_code _Residue_label 1 ASP 2 ILE 3 CYS 4 ASP 5 ILE 6 ALA 7 ILE 8 ALA 9 GLN 10 CYS 11 SER 12 LEU 13 THR 14 LEU 15 CYS 16 GLN 17 ASP 18 CYS 19 GLU 20 ASN 21 THR 22 PRO 23 ILE 24 CYS 25 GLU 26 LEU 27 ALA 28 VAL 29 LYS 30 GLY 31 SER 32 CYS 33 PRO 34 PRO 35 PRO 36 TRP 37 SER stop_ _Sequence_homology_query_date 2008-08-19 _Sequence_homology_query_revised_last_date 2008-08-19 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1HD6 'Pheromone Er-22, Nmr' 100.00 37 100.00 100.00 2.06e-12 SWISS-PROT P58548 'Mating pheromone Er-22 (Euplomone R22)' 100.00 37 100.00 100.00 2.06e-12 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $Er-22 . 5938 Eukaryota . Euplotes raikovi stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $Er-22 'purified from the natural source' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_H2O_sample _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $Er-22 6.5 mM 'natural abundance' H2O 90 % . D2O 10 % . stop_ save_ save_D2O_sample _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $Er-22 6.5 mM 'natural abundance' D2O 100 % . stop_ save_ ############################ # Computer software used # ############################ save_PROSA _Saveframe_category software _Name PROSA _Version . loop_ _Task 'spectral processing' stop_ _Details . _Citation_label $ref1 save_ save_XEASY _Saveframe_category software _Name XEASY _Version . loop_ _Task 'resonance assignment' stop_ _Details . _Citation_label $ref2 save_ save_DIANA _Saveframe_category software _Name DIANA _Version . loop_ _Task 'structure calculation' stop_ _Details . _Citation_label $ref3 save_ save_OPAL _Saveframe_category software _Name OPAL _Version . loop_ _Task 'restrained energy refinement' stop_ _Details . _Citation_label $ref4 save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 600 _Details . save_ save_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model Unity-plus _Field_strength 750 _Details . save_ ############################# # NMR applied experiments # ############################# save_2QF-COSY_1 _Saveframe_category NMR_applied_experiment _Experiment_name 2QF-COSY _Sample_label . save_ save_clean-TOCSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name clean-TOCSY _Sample_label . save_ save_2Q-spectrum_3 _Saveframe_category NMR_applied_experiment _Experiment_name 2Q-spectrum _Sample_label . save_ save_E.COSY_4 _Saveframe_category NMR_applied_experiment _Experiment_name E.COSY _Sample_label . save_ save_NOESY_5 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _Sample_label . save_ save_13C-1H_HSQC_6 _Saveframe_category NMR_applied_experiment _Experiment_name '13C-1H HSQC' _Sample_label . save_ ####################### # Sample conditions # ####################### save_Exp-cond _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 5.0 0.1 n/a temperature 296 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.000000000 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_13Ca_and_1H_shifts _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $H2O_sample $D2O_sample stop_ _Sample_conditions_label $Exp-cond _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name Er-22 _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 ASP CA C 52.9 . 1 2 . 1 ASP HA H 4.30 . 1 3 . 1 ASP HB2 H 3.21 . 1 4 . 1 ASP HB3 H 2.94 . 1 5 . 2 ILE H H 8.76 . 1 6 . 2 ILE CA C 62.0 . 1 7 . 2 ILE HA H 4.12 . 1 8 . 2 ILE HB H 1.92 . 1 9 . 2 ILE HG2 H 0.89 . 1 10 . 2 ILE HG12 H 1.49 . 2 11 . 2 ILE HG13 H 1.40 . 2 12 . 2 ILE HD1 H 0.95 . 1 13 . 3 CYS H H 8.06 . 1 14 . 3 CYS CA C 59.2 . 1 15 . 3 CYS HA H 4.18 . 1 16 . 3 CYS HB2 H 3.19 . 2 17 . 3 CYS HB3 H 3.50 . 2 18 . 4 ASP H H 7.54 . 1 19 . 4 ASP CA C 57.0 . 1 20 . 4 ASP HA H 4.28 . 1 21 . 4 ASP HB2 H 2.67 . 1 22 . 4 ASP HB3 H 2.79 . 1 23 . 5 ILE H H 7.68 . 1 24 . 5 ILE CA C 64.0 . 1 25 . 5 ILE HA H 3.72 . 1 26 . 5 ILE HB H 1.90 . 1 27 . 5 ILE HG2 H 0.85 . 1 28 . 5 ILE HG12 H 1.17 . 1 29 . 5 ILE HG13 H 1.66 . 1 30 . 5 ILE HD1 H 0.79 . 1 31 . 6 ALA H H 8.37 . 1 32 . 6 ALA CA C 55.7 . 1 33 . 6 ALA HA H 3.81 . 1 34 . 6 ALA HB H 1.49 . 1 35 . 7 ILE H H 7.43 . 1 36 . 7 ILE CA C 64.8 . 1 37 . 7 ILE HA H 3.59 . 1 38 . 7 ILE HB H 1.71 . 1 39 . 7 ILE HG2 H 0.81 . 1 40 . 7 ILE HG12 H 0.92 . 2 41 . 7 ILE HG13 H 2.03 . 2 42 . 7 ILE HD1 H 0.84 . 1 43 . 8 ALA H H 7.95 . 1 44 . 8 ALA CA C 54.6 . 1 45 . 8 ALA HA H 4.09 . 1 46 . 8 ALA HB H 1.51 . 1 47 . 9 GLN H H 8.22 . 1 48 . 9 GLN CA C 54.8 . 1 49 . 9 GLN HA H 4.27 . 1 50 . 9 GLN HB2 H 1.83 . 1 51 . 9 GLN HB3 H 2.33 . 1 52 . 9 GLN HG2 H 2.38 . 2 53 . 9 GLN HG3 H 2.48 . 2 54 . 9 GLN HE21 H 6.68 . 2 55 . 9 GLN HE22 H 7.18 . 2 56 . 10 CYS H H 8.21 . 1 57 . 10 CYS CA C 55.2 . 1 58 . 10 CYS HA H 4.30 . 1 59 . 10 CYS HB2 H 3.24 . 1 60 . 10 CYS HB3 H 3.57 . 1 61 . 11 SER H H 8.61 . 1 62 . 11 SER CA C 55.0 . 1 63 . 11 SER HA H 4.95 . 1 64 . 11 SER HB2 H 3.57 . 1 65 . 11 SER HB3 H 3.82 . 1 66 . 12 LEU H H 8.74 . 1 67 . 12 LEU CA C 57.4 . 1 68 . 12 LEU HA H 3.84 . 1 69 . 12 LEU HB2 H 1.80 . 2 70 . 12 LEU HB3 H 1.48 . 2 71 . 12 LEU HG H 1.61 . 1 72 . 12 LEU HD1 H 0.81 . 1 73 . 12 LEU HD2 H 0.62 . 1 74 . 13 THR H H 8.81 . 1 75 . 13 THR CA C 66.5 . 1 76 . 13 THR HA H 3.87 . 1 77 . 13 THR HB H 3.95 . 1 78 . 13 THR HG2 H 1.17 . 1 79 . 14 LEU H H 8.33 . 1 80 . 14 LEU CA C 56.9 . 1 81 . 14 LEU HA H 4.21 . 1 82 . 14 LEU HB2 H 1.43 . 2 83 . 14 LEU HB3 H 1.64 . 2 84 . 14 LEU HG H 1.70 . 1 85 . 14 LEU HD1 H 0.86 . 2 86 . 14 LEU HD2 H 0.82 . 2 87 . 15 CYS H H 7.63 . 1 88 . 15 CYS CA C 54.5 . 1 89 . 15 CYS HA H 4.50 . 1 90 . 15 CYS HB2 H 3.08 . 2 91 . 15 CYS HB3 H 3.37 . 2 92 . 16 GLN H H 7.85 . 1 93 . 16 GLN CA C 57.6 . 1 94 . 16 GLN HA H 4.03 . 1 95 . 16 GLN HB2 H 2.27 . 1 96 . 16 GLN HB3 H 2.11 . 1 97 . 16 GLN HG2 H 2.66 . 2 98 . 16 GLN HG3 H 2.53 . 2 99 . 16 GLN HE21 H 7.54 . 2 100 . 16 GLN HE22 H 7.09 . 2 101 . 17 ASP H H 7.47 . 1 102 . 17 ASP CA C 53.5 . 1 103 . 17 ASP HA H 4.72 . 1 104 . 17 ASP HB2 H 2.91 . 2 105 . 17 ASP HB3 H 2.68 . 2 106 . 18 CYS H H 7.15 . 1 107 . 18 CYS CA C 54.4 . 1 108 . 18 CYS HA H 4.50 . 1 109 . 18 CYS HB2 H 2.90 . 1 110 . 18 CYS HB3 H 3.36 . 1 111 . 19 GLU H H 8.23 . 1 112 . 19 GLU CA C 58.9 . 1 113 . 19 GLU HA H 4.09 . 1 114 . 19 GLU HB2 H 2.15 . 2 115 . 19 GLU HB3 H 2.09 . 2 116 . 19 GLU HG2 H 2.38 . 1 117 . 19 GLU HG3 H 2.38 . 1 118 . 20 ASN H H 7.53 . 1 119 . 20 ASN CA C 50.5 . 1 120 . 20 ASN HA H 5.10 . 1 121 . 20 ASN HB2 H 2.53 . 2 122 . 20 ASN HB3 H 3.02 . 2 123 . 20 ASN HD21 H 7.68 . 2 124 . 20 ASN HD22 H 6.78 . 2 125 . 21 THR H H 8.37 . 1 126 . 21 THR CA C 69.1 . 1 127 . 21 THR HA H 3.78 . 1 128 . 21 THR HB H 4.14 . 1 129 . 21 THR HG2 H 1.08 . 1 130 . 22 PRO CA C 66.3 . 1 131 . 22 PRO HA H 4.31 . 1 132 . 22 PRO HB2 H 1.81 . 2 133 . 22 PRO HB3 H 2.32 . 2 134 . 22 PRO HG2 H 2.10 . 2 135 . 22 PRO HG3 H 1.95 . 2 136 . 22 PRO HD2 H 3.76 . 1 137 . 22 PRO HD3 H 3.94 . 1 138 . 23 ILE H H 6.87 . 1 139 . 23 ILE CA C 62.9 . 1 140 . 23 ILE HA H 3.81 . 1 141 . 23 ILE HB H 1.77 . 1 142 . 23 ILE HG2 H 0.88 . 1 143 . 23 ILE HG12 H 1.47 . 2 144 . 23 ILE HG13 H 1.32 . 2 145 . 23 ILE HD1 H 0.76 . 1 146 . 24 CYS H H 7.58 . 1 147 . 24 CYS CA C 59.7 . 1 148 . 24 CYS HA H 4.13 . 1 149 . 24 CYS HB2 H 3.22 . 1 150 . 24 CYS HB3 H 3.51 . 1 151 . 25 GLU H H 8.63 . 1 152 . 25 GLU CA C 59.6 . 1 153 . 25 GLU HA H 3.50 . 1 154 . 25 GLU HB2 H 1.70 . 1 155 . 25 GLU HB3 H 2.08 . 1 156 . 25 GLU HG2 H 1.81 . 2 157 . 25 GLU HG3 H 2.58 . 2 158 . 26 LEU H H 7.58 . 1 159 . 26 LEU CA C 57.5 . 1 160 . 26 LEU HA H 3.82 . 1 161 . 26 LEU HB2 H 1.74 . 1 162 . 26 LEU HB3 H 1.52 . 1 163 . 26 LEU HG H 1.72 . 1 164 . 26 LEU HD1 H 0.84 . 2 165 . 26 LEU HD2 H 0.81 . 2 166 . 27 ALA H H 7.90 . 1 167 . 27 ALA CA C 54.6 . 1 168 . 27 ALA HA H 4.10 . 1 169 . 27 ALA HB H 1.53 . 1 170 . 28 VAL H H 8.36 . 1 171 . 28 VAL CA C 66.9 . 1 172 . 28 VAL HA H 3.51 . 1 173 . 28 VAL HB H 1.87 . 1 174 . 28 VAL HG1 H 0.93 . 1 175 . 28 VAL HG2 H 0.46 . 1 176 . 29 LYS H H 8.00 . 1 177 . 29 LYS CA C 58.9 . 1 178 . 29 LYS HA H 3.34 . 1 179 . 29 LYS HB2 H 1.31 . 2 180 . 29 LYS HB3 H 1.35 . 2 181 . 29 LYS HG2 H -0.69 . 2 182 . 29 LYS HG3 H 0.93 . 2 183 . 29 LYS HD2 H 1.18 . 1 184 . 29 LYS HD3 H 1.18 . 1 185 . 29 LYS HE2 H 2.40 . 1 186 . 29 LYS HE3 H 2.40 . 1 187 . 30 GLY H H 7.86 . 1 188 . 30 GLY CA C 45.4 . 1 189 . 30 GLY HA2 H 4.14 . 1 190 . 30 GLY HA3 H 3.80 . 1 191 . 31 SER H H 7.54 . 1 192 . 31 SER CA C 57.8 . 1 193 . 31 SER HA H 4.78 . 1 194 . 31 SER HB2 H 3.92 . 1 195 . 31 SER HB3 H 3.92 . 1 196 . 32 CYS H H 8.28 . 1 197 . 32 CYS CA C 54.8 . 1 198 . 32 CYS HA H 5.33 . 1 199 . 32 CYS HB2 H 3.81 . 1 200 . 32 CYS HB3 H 3.37 . 1 201 . 33 PRO CA C 60.8 . 1 202 . 33 PRO HA H 4.90 . 1 203 . 33 PRO HB2 H 2.29 . 2 204 . 33 PRO HB3 H 1.94 . 2 205 . 33 PRO HG2 H 2.20 . 2 206 . 33 PRO HG3 H 2.13 . 2 207 . 33 PRO HD2 H 3.98 . 2 208 . 33 PRO HD3 H 3.96 . 2 209 . 34 PRO CA C 60.6 . 1 210 . 34 PRO HA H 2.86 . 1 211 . 34 PRO HB2 H 0.45 . 2 212 . 34 PRO HB3 H 1.21 . 2 213 . 34 PRO HG2 H 1.68 . 1 214 . 34 PRO HG3 H 1.68 . 1 215 . 34 PRO HD2 H 3.71 . 2 216 . 34 PRO HD3 H 3.66 . 2 217 . 35 PRO CA C 61.3 . 1 218 . 35 PRO HA H 3.89 . 1 219 . 35 PRO HB2 H 2.00 . 2 220 . 35 PRO HB3 H 2.18 . 2 221 . 35 PRO HG2 H 1.81 . 1 222 . 35 PRO HG3 H 1.81 . 1 223 . 35 PRO HD2 H 3.49 . 2 224 . 35 PRO HD3 H 3.30 . 2 225 . 36 TRP H H 8.13 . 1 226 . 36 TRP CA C 57.8 . 1 227 . 36 TRP HA H 5.06 . 1 228 . 36 TRP HB2 H 3.26 . 1 229 . 36 TRP HB3 H 3.26 . 1 230 . 36 TRP HD1 H 6.85 . 1 231 . 36 TRP HE3 H 7.72 . 1 232 . 36 TRP HE1 H 9.92 . 1 233 . 36 TRP HZ3 H 7.16 . 1 234 . 36 TRP HZ2 H 7.68 . 1 235 . 36 TRP HH2 H 7.25 . 1 236 . 37 SER H H 8.61 . 1 237 . 37 SER CA C 59.8 . 1 238 . 37 SER HA H 4.47 . 1 239 . 37 SER HB2 H 4.00 . 1 240 . 37 SER HB3 H 4.00 . 1 stop_ save_