data_4891 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H chemical shift assignments for cobrotoxin II ; _BMRB_accession_number 4891 _BMRB_flat_file_name bmr4891.str _Entry_type original _Submission_date 2000-11-03 _Accession_date 2000-11-03 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cheng Yuan . . 2 Wang Wanyu . . 3 Wang Jinfeng . . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 331 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2000-12-04 original BMRB . stop_ _Original_release_date 2000-11-03 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; 1H Assigned Chemical Shifts for Neurotoxin B (ntb) ; _Citation_status published _Citation_type 'BMRB only' _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cheng Yuan . . 2 Wang Wanyu . . 3 Wang Jinfeng . . stop_ _Journal_abbreviation . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first . _Page_last . _Year 2000 _Details . save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Yu C, Bhaskaran R, Chuang LC, Yang CC. Solution conformation of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry. 1993 Mar 9;32(9):2131-6. ; _Citation_title ; Solution conformation of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8443154 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Yu C . . 2 Bhaskaran R . . 3 Chuang 'L C' C. . 4 Yang 'C C' C. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 32 _Journal_issue 9 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 2131 _Page_last 2136 _Year 1993 _Details ; The solution conformation of cobrotoxin has been determined by using proton nuclear magnetic resonance spectroscopy. With the combination of various two-dimensional NMR techniques, the 1H-NMR spectrum of cobrotoxin was completely assigned (Yu et al., 1990). A set of 435 approximate interproton distance restraints was derived from nuclear Overhauser enhancement (NOE) measurements. These NOE constraints, in addition to the 29 dihedral angle constraints (from coupling constant measurements) and 26 hydrogen bonding restraints (from the pattern of short-range NOEs), form the basis of 3-D structure determination by the hybrid distance geometry-dynamical simulated annealing method. The 23 structures that were obtained satisfy the experimental restraints, display small deviation from idealized covalent geometry, and possess good nonbonded contacts. Analysis of converged structures indicated that there are two antiparallel beta sheets (double and triple stranded), duly confirming our earlier observations. These are well defined in terms of both atomic root mean square (RMS) differences and backbone torsional angles. The average backbone RMS deviation between the calculated structures and the mean structure, for the beta-sheet regions, is 0.92 A. The mean solution structure was compared with the X-ray crystal structure of erabutoxin b, the homologous protein. This yielded information that both structures resemble each other except at the exposed loop/surface regions, where the solution structure seems to possess more flexibility. ; save_ ################################## # Molecular system description # ################################## save_ntb _Saveframe_category molecular_system _Mol_system_name 'chinese cobrotoxin' _Abbreviation_common ntb _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label ntb $CBT stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all disulfide bound' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_CBT _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'cobrotoxin, neurotoxin' _Abbreviation_common CBT _Molecular_mass . _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 62 _Mol_residue_sequence ; LECHNQQSSQTPTTTGCSGG ENNCYKKEWRDNRGYRTERG CGCPSVKKGIGINCCTTDRC NN ; loop_ _Residue_seq_code _Residue_label 1 LEU 2 GLU 3 CYS 4 HIS 5 ASN 6 GLN 7 GLN 8 SER 9 SER 10 GLN 11 THR 12 PRO 13 THR 14 THR 15 THR 16 GLY 17 CYS 18 SER 19 GLY 20 GLY 21 GLU 22 ASN 23 ASN 24 CYS 25 TYR 26 LYS 27 LYS 28 GLU 29 TRP 30 ARG 31 ASP 32 ASN 33 ARG 34 GLY 35 TYR 36 ARG 37 THR 38 GLU 39 ARG 40 GLY 41 CYS 42 GLY 43 CYS 44 PRO 45 SER 46 VAL 47 LYS 48 LYS 49 GLY 50 ILE 51 GLY 52 ILE 53 ASN 54 CYS 55 CYS 56 THR 57 THR 58 ASP 59 ARG 60 CYS 61 ASN 62 ASN stop_ _Sequence_homology_query_date 2008-08-19 _Sequence_homology_query_revised_last_date 2008-08-19 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1G6M 'Nmr Solution Structure Of Cbt2' 100.00 62 100.00 100.00 1.13e-27 SWISS-PROT P82849 'Cobrotoxin II (CBT II) (CBT2) (Short neurotoxin 5) (Short neurotoxin 1)' 100.00 62 100.00 100.00 1.13e-27 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $CBT 'monocled cobra' 8649 Eukaryota Metazoa Naja kaouthia stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $CBT 'purified from the natural source' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $CBT 4 mM . H2O 90 % . D2O 10 % . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $CBT 4 mM . D2O 100 % . stop_ save_ ############################ # Computer software used # ############################ save_FELIX _Saveframe_category software _Name FELIX _Version 98 _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DMX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_DQF-COSY_1 _Saveframe_category NMR_applied_experiment _Experiment_name DQF-COSY _Sample_label . save_ save_TQF-COSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name TQF-COSY _Sample_label . save_ save_TOCSY_3 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _Sample_label . save_ save_NOESY_4 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _Sample_label . save_ save_E-COSY_5 _Saveframe_category NMR_applied_experiment _Experiment_name E-COSY _Sample_label . save_ ####################### # Sample conditions # ####################### save_cond_sample_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 4.0 0.2 n/a temperature 300 1 K stop_ save_ save_cond_sample_2 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pD 4.5 0.3 n/a temperature 300 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_1H_shift _Saveframe_category assigned_chemical_shifts _Details . loop_ _Experiment_label DQF-COSY TQF-COSY TOCSY NOESY E-COSY stop_ loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $cond_sample_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name ntb _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 LEU HA H 4.170 0.01 1 2 . 1 LEU HB2 H 1.466 0.01 1 3 . 1 LEU HB3 H 1.466 0.01 1 4 . 1 LEU HG H 1.411 0.01 1 5 . 1 LEU HD1 H 0.694 0.01 2 6 . 1 LEU HD2 H 0.569 0.01 2 7 . 2 GLU H H 8.604 0.01 1 8 . 2 GLU HA H 5.142 0.01 1 9 . 2 GLU HB2 H 1.768 0.01 1 10 . 2 GLU HB3 H 1.768 0.01 1 11 . 2 GLU HG2 H 2.112 0.01 2 12 . 2 GLU HG3 H 1.956 0.01 2 13 . 3 CYS H H 8.548 0.01 1 14 . 3 CYS HA H 5.024 0.01 1 15 . 3 CYS HB2 H 2.932 0.01 1 16 . 3 CYS HB3 H 2.320 0.01 1 17 . 4 HIS H H 9.589 0.01 1 18 . 4 HIS HA H 5.255 0.01 1 19 . 4 HIS HB2 H 3.626 0.01 1 20 . 4 HIS HB3 H 2.766 0.01 1 21 . 4 HIS HD2 H 6.695 0.01 1 22 . 4 HIS HE1 H 8.370 0.01 1 23 . 5 ASN H H 8.333 0.01 1 24 . 5 ASN HA H 4.830 0.01 1 25 . 5 ASN HB2 H 2.272 0.01 1 26 . 5 ASN HB3 H 3.056 0.01 1 27 . 5 ASN HD21 H 6.920 0.01 1 28 . 5 ASN HD22 H 7.577 0.01 1 29 . 6 GLN H H 9.068 0.01 1 30 . 6 GLN HA H 4.570 0.01 1 31 . 6 GLN HB2 H 1.946 0.01 1 32 . 6 GLN HB3 H 2.603 0.01 1 33 . 6 GLN HG2 H 2.066 0.01 2 34 . 6 GLN HG3 H 2.508 0.01 2 35 . 7 GLN H H 8.440 0.01 1 36 . 7 GLN HA H 4.701 0.01 1 37 . 7 GLN HB2 H 2.005 0.01 1 38 . 7 GLN HB3 H 2.271 0.01 1 39 . 7 GLN HG2 H 2.580 0.01 1 40 . 7 GLN HG3 H 2.580 0.01 1 41 . 8 SER H H 8.966 0.01 1 42 . 8 SER HA H 4.173 0.01 1 43 . 8 SER HB2 H 3.789 0.01 1 44 . 8 SER HB3 H 3.789 0.01 1 45 . 9 SER H H 8.456 0.01 1 46 . 9 SER HA H 4.013 0.01 1 47 . 9 SER HB2 H 4.669 0.01 1 48 . 9 SER HB3 H 4.669 0.01 1 49 . 10 GLN H H 7.943 0.01 1 50 . 10 GLN HA H 4.283 0.01 1 51 . 10 GLN HB2 H 2.072 0.01 1 52 . 10 GLN HB3 H 2.291 0.01 1 53 . 10 GLN HG2 H 2.550 0.01 2 54 . 10 GLN HG3 H 2.461 0.01 2 55 . 10 GLN HE21 H 7.735 0.01 1 56 . 10 GLN HE22 H 6.578 0.01 1 57 . 11 THR H H 8.237 0.01 1 58 . 11 THR HA H 4.287 0.01 1 59 . 11 THR HB H 3.998 0.01 1 60 . 11 THR HG2 H 1.280 0.01 1 61 . 12 PRO HA H 3.896 0.01 1 62 . 12 PRO HB2 H 1.890 0.01 1 63 . 12 PRO HB3 H 1.890 0.01 1 64 . 12 PRO HG2 H 1.772 0.01 2 65 . 12 PRO HG3 H 2.060 0.01 2 66 . 12 PRO HD2 H 3.624 0.01 2 67 . 12 PRO HD3 H 3.978 0.01 2 68 . 13 THR H H 7.967 0.01 1 69 . 13 THR HA H 4.784 0.01 1 70 . 13 THR HB H 4.524 0.01 1 71 . 13 THR HG2 H 1.233 0.01 1 72 . 14 THR H H 8.694 0.01 1 73 . 14 THR HA H 4.984 0.01 1 74 . 14 THR HB H 3.752 0.01 1 75 . 14 THR HG2 H 0.595 0.01 1 76 . 15 THR H H 8.639 0.01 1 77 . 15 THR HA H 4.646 0.01 1 78 . 15 THR HB H 3.855 0.01 1 79 . 15 THR HG2 H 1.026 0.01 1 80 . 16 GLY H H 8.304 0.01 1 81 . 16 GLY HA2 H 4.446 0.01 1 82 . 16 GLY HA3 H 3.697 0.01 1 83 . 17 CYS H H 8.468 0.01 1 84 . 17 CYS HA H 5.038 0.01 1 85 . 17 CYS HB2 H 3.574 0.01 1 86 . 17 CYS HB3 H 2.799 0.01 1 87 . 18 SER H H 9.111 0.01 1 88 . 18 SER HA H 4.522 0.01 1 89 . 18 SER HB2 H 3.953 0.01 2 90 . 18 SER HB3 H 4.000 0.01 2 91 . 19 GLY H H 8.929 0.01 1 92 . 19 GLY HA2 H 4.066 0.01 2 93 . 19 GLY HA3 H 3.805 0.01 2 94 . 20 GLY H H 8.570 0.01 1 95 . 20 GLY HA2 H 4.058 0.01 1 96 . 20 GLY HA3 H 3.790 0.01 1 97 . 21 GLU H H 8.114 0.01 1 98 . 21 GLU HA H 4.215 0.01 1 99 . 21 GLU HB2 H 2.027 0.01 1 100 . 21 GLU HB3 H 2.183 0.01 1 101 . 21 GLU HG2 H 2.513 0.01 2 102 . 21 GLU HG3 H 2.432 0.01 2 103 . 22 ASN H H 8.268 0.01 1 104 . 22 ASN HA H 4.432 0.01 1 105 . 22 ASN HB2 H 1.199 0.01 1 106 . 22 ASN HB3 H 1.199 0.01 1 107 . 23 ASN H H 8.552 0.01 1 108 . 23 ASN HA H 5.613 0.01 1 109 . 23 ASN HB2 H 2.653 0.01 1 110 . 23 ASN HB3 H 2.322 0.01 1 111 . 23 ASN HD21 H 7.075 0.01 1 112 . 23 ASN HD22 H 6.693 0.01 1 113 . 24 CYS H H 9.107 0.01 1 114 . 24 CYS HA H 5.669 0.01 1 115 . 24 CYS HB2 H 2.779 0.01 1 116 . 24 CYS HB3 H 3.272 0.01 1 117 . 25 TYR H H 8.853 0.01 1 118 . 25 TYR HA H 6.202 0.01 1 119 . 25 TYR HB2 H 2.832 0.01 1 120 . 25 TYR HB3 H 3.882 0.01 1 121 . 25 TYR HD1 H 6.726 0.01 3 122 . 25 TYR HE1 H 6.535 0.01 3 123 . 26 LYS H H 8.850 0.01 1 124 . 26 LYS HA H 5.117 0.01 1 125 . 26 LYS HB2 H 1.890 0.01 1 126 . 26 LYS HB3 H 1.566 0.01 1 127 . 26 LYS HG2 H 1.204 0.01 1 128 . 26 LYS HG3 H 1.204 0.01 1 129 . 26 LYS HD2 H 1.300 0.01 1 130 . 26 LYS HD3 H 1.300 0.01 1 131 . 26 LYS HE2 H 2.722 0.01 1 132 . 26 LYS HE3 H 2.722 0.01 1 133 . 27 LYS H H 9.891 0.01 1 134 . 27 LYS HA H 5.669 0.01 1 135 . 27 LYS HB2 H 2.024 0.01 1 136 . 27 LYS HB3 H 1.870 0.01 1 137 . 27 LYS HG2 H 1.391 0.01 1 138 . 27 LYS HG3 H 1.391 0.01 1 139 . 27 LYS HD2 H 1.481 0.01 1 140 . 27 LYS HD3 H 1.481 0.01 1 141 . 27 LYS HE2 H 2.418 0.01 2 142 . 27 LYS HE3 H 2.363 0.01 2 143 . 28 GLU H H 9.380 0.01 1 144 . 28 GLU HA H 5.890 0.01 1 145 . 28 GLU HB2 H 1.884 0.01 1 146 . 28 GLU HB3 H 1.659 0.01 1 147 . 28 GLU HG2 H 2.965 0.01 2 148 . 28 GLU HG3 H 2.861 0.01 2 149 . 29 TRP H H 8.845 0.01 1 150 . 29 TRP HA H 5.215 0.01 1 151 . 29 TRP HB2 H 3.539 0.01 1 152 . 29 TRP HB3 H 3.389 0.01 1 153 . 29 TRP HD1 H 7.018 0.01 1 154 . 29 TRP HE1 H 10.326 0.01 1 155 . 29 TRP HE3 H 7.293 0.01 1 156 . 29 TRP HZ3 H 6.830 0.01 1 157 . 29 TRP HH2 H 7.158 0.01 1 158 . 29 TRP HZ2 H 7.372 0.01 1 159 . 30 ARG H H 8.717 0.01 1 160 . 30 ARG HA H 4.355 0.01 1 161 . 30 ARG HB2 H 1.609 0.01 1 162 . 30 ARG HB3 H 1.379 0.01 1 163 . 30 ARG HG2 H 1.244 0.01 2 164 . 30 ARG HG3 H 1.115 0.01 2 165 . 30 ARG HD2 H 2.849 0.01 1 166 . 30 ARG HD3 H 2.849 0.01 1 167 . 30 ARG HE H 6.938 0.01 1 168 . 31 ASP H H 8.285 0.01 1 169 . 31 ASP HA H 4.815 0.01 1 170 . 31 ASP HB2 H 2.620 0.01 1 171 . 31 ASP HB3 H 2.852 0.01 1 172 . 33 ARG H H 8.421 0.01 1 173 . 33 ARG HA H 4.282 0.01 1 174 . 33 ARG HB2 H 1.912 0.01 2 175 . 33 ARG HB3 H 1.733 0.01 2 176 . 33 ARG HG2 H 1.429 0.01 2 177 . 33 ARG HG3 H 1.487 0.01 2 178 . 33 ARG HD2 H 3.152 0.01 1 179 . 33 ARG HD3 H 3.152 0.01 1 180 . 33 ARG HE H 7.176 0.01 1 181 . 34 GLY H H 7.725 0.01 1 182 . 34 GLY HA2 H 4.161 0.01 1 183 . 34 GLY HA3 H 3.788 0.01 1 184 . 35 TYR H H 8.458 0.01 1 185 . 35 TYR HA H 4.769 0.01 1 186 . 35 TYR HB2 H 2.697 0.01 1 187 . 35 TYR HB3 H 2.697 0.01 1 188 . 35 TYR HD1 H 6.935 0.01 3 189 . 35 TYR HE1 H 6.768 0.01 3 190 . 36 ARG H H 8.798 0.01 1 191 . 36 ARG HA H 4.304 0.01 1 192 . 36 ARG HB2 H 0.177 0.01 1 193 . 36 ARG HB3 H 0.811 0.01 1 194 . 36 ARG HG2 H 1.000 0.01 1 195 . 36 ARG HG3 H 1.000 0.01 1 196 . 36 ARG HD2 H 2.842 0.01 2 197 . 36 ARG HD3 H 2.912 0.01 2 198 . 36 ARG HE H 7.154 0.01 1 199 . 37 THR H H 7.725 0.01 1 200 . 37 THR HA H 5.582 0.01 1 201 . 37 THR HB H 3.788 0.01 1 202 . 37 THR HG2 H 1.124 0.01 1 203 . 38 GLU H H 9.540 0.01 1 204 . 38 GLU HA H 4.928 0.01 1 205 . 38 GLU HB2 H 2.358 0.01 1 206 . 38 GLU HB3 H 2.281 0.01 1 207 . 38 GLU HG2 H 2.358 0.01 2 208 . 38 GLU HG3 H 2.281 0.01 2 209 . 39 ARG H H 8.758 0.01 1 210 . 39 ARG HA H 4.828 0.01 1 211 . 39 ARG HB2 H 1.526 0.01 1 212 . 39 ARG HB3 H 1.526 0.01 1 213 . 39 ARG HG2 H 1.148 0.01 1 214 . 39 ARG HG3 H 1.148 0.01 1 215 . 40 GLY H H 6.187 0.01 1 216 . 40 GLY HA2 H 3.831 0.01 2 217 . 40 GLY HA3 H 3.929 0.01 2 218 . 41 CYS H H 8.639 0.01 1 219 . 41 CYS HA H 5.326 0.01 1 220 . 41 CYS HB2 H 2.917 0.01 1 221 . 41 CYS HB3 H 3.265 0.01 1 222 . 42 GLY H H 9.326 0.01 1 223 . 42 GLY HA2 H 3.761 0.01 2 224 . 42 GLY HA3 H 4.363 0.01 2 225 . 43 CYS H H 8.072 0.01 1 226 . 43 CYS HA H 4.938 0.01 1 227 . 43 CYS HB2 H 2.618 0.01 1 228 . 43 CYS HB3 H 2.822 0.01 1 229 . 44 PRO HA H 4.270 0.01 1 230 . 44 PRO HB2 H 1.971 0.01 2 231 . 44 PRO HB3 H 1.584 0.01 2 232 . 44 PRO HG2 H 1.020 0.01 2 233 . 44 PRO HG3 H 0.948 0.01 2 234 . 44 PRO HD2 H 2.782 0.01 1 235 . 44 PRO HD3 H 2.782 0.01 1 236 . 45 SER H H 7.885 0.01 1 237 . 45 SER HA H 4.344 0.01 1 238 . 45 SER HB2 H 3.755 0.01 1 239 . 45 SER HB3 H 3.755 0.01 1 240 . 46 VAL H H 8.159 0.01 1 241 . 46 VAL HA H 4.304 0.01 1 242 . 46 VAL HB H 2.036 0.01 1 243 . 46 VAL HG1 H 0.833 0.01 1 244 . 46 VAL HG2 H 0.765 0.01 1 245 . 47 LYS H H 7.620 0.01 1 246 . 47 LYS HA H 4.411 0.01 1 247 . 47 LYS HB2 H 1.609 0.01 1 248 . 47 LYS HB3 H 1.609 0.01 1 249 . 47 LYS HG2 H 1.360 0.01 1 250 . 47 LYS HG3 H 1.360 0.01 1 251 . 47 LYS HD2 H 1.843 0.01 1 252 . 47 LYS HD3 H 1.843 0.01 1 253 . 47 LYS HE2 H 2.918 0.01 1 254 . 47 LYS HE3 H 2.918 0.01 1 255 . 48 LYS H H 8.285 0.01 1 256 . 48 LYS HA H 4.462 0.01 1 257 . 48 LYS HB2 H 2.782 0.01 1 258 . 48 LYS HB3 H 2.782 0.01 1 259 . 48 LYS HG2 H 0.698 0.01 1 260 . 48 LYS HG3 H 0.698 0.01 1 261 . 48 LYS HD2 H 0.937 0.01 2 262 . 48 LYS HD3 H 1.008 0.01 2 263 . 49 GLY H H 8.708 0.01 1 264 . 49 GLY HA2 H 4.270 0.01 1 265 . 49 GLY HA3 H 3.739 0.01 1 266 . 50 ILE H H 7.619 0.01 1 267 . 50 ILE HA H 4.485 0.01 1 268 . 50 ILE HB H 1.884 0.01 1 269 . 50 ILE HG12 H 1.351 0.01 1 270 . 50 ILE HG13 H 0.974 0.01 1 271 . 50 ILE HG2 H 0.833 0.01 1 272 . 50 ILE HD1 H 0.541 0.01 1 273 . 51 GLY H H 8.645 0.01 1 274 . 51 GLY HA2 H 4.630 0.01 1 275 . 51 GLY HA3 H 4.630 0.01 1 276 . 52 ILE H H 8.663 0.01 1 277 . 52 ILE HA H 5.327 0.01 1 278 . 52 ILE HB H 1.642 0.01 1 279 . 52 ILE HG12 H 1.470 0.01 2 280 . 52 ILE HG13 H 1.200 0.01 2 281 . 52 ILE HG2 H 0.930 0.01 1 282 . 52 ILE HD1 H 0.695 0.01 1 283 . 53 ASN H H 8.619 0.01 1 284 . 53 ASN HA H 5.100 0.01 1 285 . 53 ASN HB2 H 2.625 0.01 1 286 . 53 ASN HB3 H 2.742 0.01 1 287 . 54 CYS H H 9.175 0.01 1 288 . 54 CYS HA H 5.915 0.01 1 289 . 54 CYS HB2 H 3.550 0.01 1 290 . 54 CYS HB3 H 3.159 0.01 1 291 . 55 CYS H H 9.361 0.01 1 292 . 55 CYS HA H 5.322 0.01 1 293 . 55 CYS HB2 H 3.343 0.01 1 294 . 55 CYS HB3 H 3.677 0.01 1 295 . 56 THR H H 8.419 0.01 1 296 . 56 THR HA H 5.120 0.01 1 297 . 56 THR HB H 4.650 0.01 1 298 . 56 THR HG2 H 1.205 0.01 1 299 . 57 THR H H 7.462 0.01 1 300 . 57 THR HA H 4.763 0.01 1 301 . 57 THR HB H 4.282 0.01 1 302 . 57 THR HG2 H 1.191 0.01 1 303 . 58 ASP H H 8.172 0.01 1 304 . 58 ASP HA H 4.694 0.01 1 305 . 58 ASP HB2 H 2.472 0.01 1 306 . 58 ASP HB3 H 2.399 0.01 1 307 . 59 ARG H H 9.399 0.01 1 308 . 59 ARG HA H 3.192 0.01 1 309 . 59 ARG HB2 H 1.956 0.01 1 310 . 59 ARG HB3 H 1.956 0.01 1 311 . 59 ARG HG2 H 0.596 0.01 2 312 . 59 ARG HG3 H 1.240 0.01 2 313 . 59 ARG HD2 H 2.946 0.01 2 314 . 59 ARG HD3 H 3.160 0.01 2 315 . 59 ARG HE H 7.269 0.01 1 316 . 60 CYS H H 7.810 0.01 1 317 . 60 CYS HA H 4.468 0.01 1 318 . 60 CYS HB2 H 3.799 0.01 1 319 . 60 CYS HB3 H 3.368 0.01 1 320 . 61 ASN H H 9.180 0.01 1 321 . 61 ASN HA H 4.762 0.01 1 322 . 61 ASN HB2 H 2.232 0.01 1 323 . 61 ASN HB3 H 2.728 0.01 1 324 . 61 ASN HD21 H 8.229 0.01 1 325 . 61 ASN HD22 H 7.909 0.01 1 326 . 62 ASN H H 7.545 0.01 1 327 . 62 ASN HA H 3.988 0.01 1 328 . 62 ASN HB2 H 2.469 0.01 2 329 . 62 ASN HB3 H 2.572 0.01 2 330 . 62 ASN HD21 H 7.350 0.01 1 331 . 62 ASN HD22 H 6.482 0.01 1 stop_ save_