data_4978 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; NMR assignments for the Ca2+-bound B0 isoform of the C-terminal globular domain of agrin (agrin-G3) ; _BMRB_accession_number 4978 _BMRB_flat_file_name bmr4978.str _Entry_type original _Submission_date 2001-03-25 _Accession_date 2001-03-25 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Alexandrescu Andrei T. . 2 Maciejewski Mark W. . 3 Ruegg Markus A. . 4 Engel Jurgen . . 5 Kammerer Richard A. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 484 "13C chemical shifts" 548 "15N chemical shifts" 193 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2001-07-30 original author . stop_ _Original_release_date 2001-07-30 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Letter to the Editor: 1H, 13C and 15N backbone assignments for the C-terminal globular domain of agrin ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Alexandrescu Andrei T. . 2 Maciejewski Mark W. . 3 Ruegg Markus A. . 4 Engel Jurgen . . 5 Kammerer Richard A. . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_volume 20 _Journal_issue 3 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 295 _Page_last 296 _Year 2001 _Details . loop_ _Keyword 'synapse development' 'neuromuscular junction' 'AChR clustering' 'sequence isoforms' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Sanes, J.R. & Lichtman, J.W. (1999) Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci 22: 389-442. ; _Citation_title 'Development of the vertebrate neuromuscular junction.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10202544 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Sanes J.R. R. . 2 Lichtman J.W. W. . stop_ _Journal_abbreviation 'Annu. Rev. Neurosci.' _Journal_name_full 'Annual review of neuroscience' _Journal_volume 22 _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 389 _Page_last 442 _Year 1999 _Details ; We describe the formation, maturation, elimination, maintenance, and regeneration of vertebrate neuromuscular junctions (NMJs), the best studied of all synapses. The NMJ forms in a series of steps that involve the exchange of signals among its three cellular components--nerve terminal, muscle fiber, and Schwann cell. Although essentially any motor axon can form NMJs with any muscle fiber, an additional set of cues biases synapse formation in favor of appropriate partners. The NMJ is functional at birth but undergoes numerous alterations postnatally. One step in maturation is the elimination of excess inputs, a competitive process in which the muscle is an intermediary. Once elimination is complete, the NMJ is maintained stably in a dynamic equilibrium that can be perturbed to initiate remodeling. NMJs regenerate following damage to nerve or muscle, but this process differs in fundamental ways from embryonic synaptogenesis. Finally, we consider the extent to which the NMJ is a suitable model for development of neuron-neuron synapses. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Marx, J. (1992) Getting it together at the synapse. Science 258: 1304-1306. ; _Citation_title 'Getting it together at the synapse.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1333640 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Marx J. . . stop_ _Journal_abbreviation Science _Journal_name_full 'Science (New York, N.Y.)' _Journal_volume 258 _Journal_issue 5086 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1304 _Page_last 1306 _Year 1992 _Details . save_ save_ref_3 _Saveframe_category citation _Citation_full ; Hoch, W. (1999) Formation of the neuromuscular junction: agrin and its unusual receptors. Eur. J. Biochem. 265: 1-10. ; _Citation_title 'Formation of the neuromuscular junction. Agrin and its unusual receptors.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10491152 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Hoch W. . . stop_ _Journal_abbreviation 'Eur. J. Biochem.' _Journal_name_full 'European journal of biochemistry / FEBS' _Journal_volume 265 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1 _Page_last 10 _Year 1999 _Details ; Synapses are essential relay stations for the transmission of information between neurones and other cells. An ordered and tightly regulated formation of these structures is crucial for the functioning of the nervous system. The induction of the intensively studied synapse between nerve and muscle is initiated by the binding of neurone-specific isoforms of the basal membrane protein agrin to receptors on the surface of myotubes. Agrin activates a receptor complex that includes the muscle-specific kinase and most likely additional, yet to be identified, components. Receptor activation leads to the aggregation of acetylcholine receptors (AChR) and other proteins of the postsynaptic apparatus. This activation process has unique features which distinguish it from other receptor tyrosine kinases. In particular, the autophosphorylation of the kinase domain, which usually induces the recruitment of adaptor and signalling molecules, is not sufficient for AChR aggregation. Apparently, interactions of the extracellular domain with unknown components are also required for this process. Agrin binds to a second protein complex on the muscle surface known as the dystrophin-associated glycoprotein complex. This binding forms one end of a molecular link between the extracellular matrix and the cytoskeleton. While many components of the machinery triggering postsynaptic differentiation have now been identified, our picture of the molecular pathway causing the redistribution of synaptic proteins is still incomplete. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; McMahan, U.J.Horton, S.E., Werle, M.J., Honig, L.S., Kroger, S., Ruegg, M.A. & Escher, G. (1992) Agrin isoforms and their roles in synaptogenesis. Curr. Opin. Cell Biol. 4: 869-874. ; _Citation_title 'Agrin isoforms and their role in synaptogenesis.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1329871 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 McMahan U.J. J. . 2 Horton S.E. E. . 3 Werle M.J. J. . 4 Honig L.S. S. . 5 Kroger S. . . 6 Ruegg M.A. A. . 7 Escher G. . . stop_ _Journal_abbreviation 'Curr. Opin. Cell Biol.' _Journal_name_full 'Current opinion in cell biology' _Journal_volume 4 _Journal_issue 5 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 869 _Page_last 874 _Year 1992 _Details ; Agrin is thought to mediate the motor neuron-induced aggregation of synaptic proteins on the surface of muscle fibers at neuromuscular junctions. Recent experiments provide direct evidence in support of this hypothesis, reveal the nature of agrin immunoreactivity at sites other than neuromuscular junctions, and have resulted in findings that are consistent with the possibility that agrin plays a role in synaptogenesis throughout the nervous system. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; Gautam, M., Noakes, P.G., Moscoso, L., Rupp, F., Scheller, R.H., & Hall, Z. (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85: 525-535. ; _Citation_title 'Defective neuromuscular synaptogenesis in agrin-deficient mutant mice.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8653788 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Gautam M. . . 2 Noakes P.G. G. . 3 Moscoso L. . . 4 Rupp F. . . 5 Scheller R.H. H. . 6 Merlie J.P. P. . 7 Sanes J.R. R. . stop_ _Journal_abbreviation Cell _Journal_name_full Cell _Journal_volume 85 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 525 _Page_last 535 _Year 1996 _Details ; During neuromuscular synapse formation, motor axons induce clustering of acetylcholine receptors (AChRs) in the muscle fiber membrane. The protein agrin, originally isolated from the basal lamina of the synaptic cleft, is synthesized and secreted by motoneurons and triggers formation of AChR clusters on cultured myotubes. We show here postsynaptic AChR aggregates are markedly reduced in number, size, and density in muscles of agrin-deficient mutant mice. These results support the hypothesis that agrin is a critical organizer of postsynaptic differentiation does occur in the mutant, suggesting the existence of a second-nerve-derived synaptic organizing signal. In addition, we show that intramuscular nerve branching and presynaptic differentiation are abnormal in the mutant, phenotypes which may reflect either a distinct effect of agrin or impaired retrograde signaling from a defective postsynaptic apparatus. ; save_ save_ref_6 _Saveframe_category citation _Citation_full ; Megeath, L.J. & Fallon, J.R. (1998) Intracellular calcium regulates agrin-induced acetylcholine receptor clustering. J. Neurosci. 18: 672-678. ; _Citation_title 'Intracellular calcium regulates agrin-induced acetylcholine receptor clustering.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9425009 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Megeath L.J. J. . 2 Fallon J.R. R. . stop_ _Journal_abbreviation 'J. Neurosci.' _Journal_name_full 'The Journal of neuroscience : the official journal of the Society for Neuroscience' _Journal_volume 18 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 672 _Page_last 678 _Year 1998 _Details ; Agrin is an extracellular matrix protein that directs neuromuscular junction formation. Early signal transduction events in agrin-mediated postsynaptic differentiation include activation of a receptor tyrosine kinase and phosphorylation of acetylcholine receptors (AChRs), but later steps in this pathway are unknown. Here, we have investigated the role of intracellular calcium in agrin-induced AChR clustering on cultured myotubes. Clamping intracellular calcium levels by loading with the fast chelator BAPTA inhibited agrin-induced AChR aggregation. In addition, preexisting AChR aggregates dispersed under these conditions, indicating that the maintenance of AChR clusters is similarly dependent on intracellular calcium fluxes. The decrease in AChR clusters in BAPTA-loaded cells was dose-dependent and reversible, and no change in the number or mobility of AChRs was observed. Clamping intracellular calcium did not block agrin-induced tyrosine phosphorylation of the AChR beta-subunit, indicating that intracellular calcium fluxes are likely to act downstream from or parallel to AChR phosphorylation. Finally, the targets of the intracellular calcium are likely to be close to the calcium source, since agrin-induced AChR clustering was unaffected in cells loaded with EGTA, a slower-binding calcium chelator. These findings distinguish a novel step in the signal transduction mechanism of agrin and raise the possibility that the pathways mediating agrin- and activity-driven changes in synaptic architecture could intersect at the level of intracellular calcium fluxes. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; Donahue, J.E., Berzin, T.M., Rafii, M.S., Glass, D.J., Yancopoulos, G.D., Fallon, J.R., & Stopa, E.G. (1999) Agrin in alzheimer's disease: altered solubility and abnormal distribution within microvasculature and brain parenchyma. Proc. Natl. Acad. Sci. USA 96: 6468-6472. ; _Citation_title 'Agrin in Alzheimer's disease: altered solubility and abnormal distribution within microvasculature and brain parenchyma.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10339611 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Donahue J.E. E. . 2 Berzin T.M. M. . 3 Rafii M.S. S. . 4 Glass D.J. J. . 5 Yancopoulos G.D. D. . 6 Fallon J.R. R. . 7 Stopa E.G. G. . stop_ _Journal_abbreviation 'Proc. Natl. Acad. Sci. U.S.A.' _Journal_name_full 'Proceedings of the National Academy of Sciences of the United States of America' _Journal_volume 96 _Journal_issue 11 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 6468 _Page_last 6472 _Year 1999 _Details ; Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with beta-amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to beta-amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD. ; save_ save_ref_8 _Saveframe_category citation _Citation_full ; Cotman, S.L., Halfter, W., & Cole G.J. (2000) Agrin binds to b-amyloid (Ab), accelerates Ab fibril formation, and is localized to Ab deposits in Alzheimer's disease brain . Molec. Cell. Neurosci. 15: 183-198. ; _Citation_title 'Agrin binds to beta-amyloid (Abeta), accelerates abeta fibril formation, and is localized to Abeta deposits in Alzheimer's disease brain.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10673326 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Cotman S.L. L. . 2 Halfter W. . . 3 Cole G.J. J. . stop_ _Journal_abbreviation 'Mol. Cell. Neurosci.' _Journal_name_full 'Molecular and cellular neurosciences' _Journal_volume 15 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 183 _Page_last 198 _Year 2000 _Details ; Agrin is an extracellular matrix heparan sulfate proteoglycan (HSPG) well known for its role in modulation of the neuromuscular junction during development. Although agrin is one of the major HSPGs of the brain, its function there remains elusive. Here we provide evidence suggesting a possible function for agrin in Alzheimer's disease brain. Agrin protein binds the amyloidogenic peptide Abeta (1-40) in its fibrillar state via a mechanism that involves the heparan sulfate glycosaminoglycan chains of agrin. Furthermore, agrin is able to accelerate Abeta fibril formation and protect Abeta (1-40) from proteolysis, in vitro. Supporting a biological significance for these in vitro data, immunocytochemical studies demonstrate agrin's presence within senile plaques and cerebrovascular amyloid deposits, and agrin immunostained capillaries exhibit pathological alterations in AD brain. These data therefore suggest that agrin may be an important factor in the progression of Abeta peptide aggregation and/or its persistence in Alzheimer's disease brain. ; save_ save_ref_9 _Saveframe_category citation _Citation_full ; Beckmann,G., Hanke, J., Bork, P. & Reich, J.G. (1998). Merging extracellular domains: fold prediction for laminin G-like and amino-terminal thrombospondin-like modules based on homology to pentraxins. J. Mol. Biol. 275: 725-730. ; _Citation_title 'Merging extracellular domains: fold prediction for laminin G-like and amino-terminal thrombospondin-like modules based on homology to pentraxins.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9480764 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Beckmann G. . . 2 Hanke J. . . 3 Bork P. . . 4 Reich J.G. G. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 275 _Journal_issue 5 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 725 _Page_last 730 _Year 1998 _Details ; Using a new method for construction and database searches of sequence consensus strings, we have identified a new superfamily of protein modules comprising laminin G, thrombospondin N and the pentraxin families. The conserved patterns correspond mainly to hydrophobic core residues located in central beta strands of the known three-dimensional structures of two pentraxins, the human C-reactive protein and the serum amyloid P-component. Thus, we predict a similar jellyroll fold for all members of this superfamily. In addition, the conservation of two exposed aspartate residues in the majority of superfamily members suggests hitherto unrecognised functional sites. ; save_ save_ref_10 _Saveframe_category citation _Citation_full ; Denzer, A.J., Schulthess, T., Fauser, C., Schumacher, B., Kammerer, R.A., Engel, J. & Ruegg, M.A. (1998) Electron microscopic structure of agrin and mapping of its binding site in laminin-1. EMBO J 17: 335-343. ; _Citation_title 'Electron microscopic structure of agrin and mapping of its binding site in laminin-1.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9430625 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Denzer A.J. J. . 2 Schulthess T. . . 3 Fauser C. . . 4 Schumacher B. . . 5 Kammerer R.A. A. . 6 Engel J. . . 7 Ruegg M.A. A. . stop_ _Journal_abbreviation 'EMBO J.' _Journal_name_full 'The EMBO journal' _Journal_volume 17 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 335 _Page_last 343 _Year 1998 _Details ; Agrin is a large, multidomain heparan sulfate proteoglycan that is associated with basement membranes of several tissues. Particular splice variants of agrin are essential for the formation of synaptic structures at the neuromuscular junction. The binding of agrin to laminin appears to be required for its localization to synaptic basal lamina and other basement membranes. Here, electron microscopy was used to determine the structure of agrin and to localize its binding site in laminin-1. Agrin appears as an approximately 95 nm long particle that consists of a globular, N-terminal laminin-binding domain, a central rod predominantly formed by the follistatin-like domains and three globular, C-terminal laminin G-like domains. In a few cases, heparan sulfate glycosaminoglycan chains were seen emerging from the central portion of the core protein. Moreover, we show that agrin binds to the central region of the three-stranded, coiled-coil oligomerization domain in the long arm of laminin-1, which mediates subunit assembly of the native laminin molecule. In summary, our data show for the first time a protein-protein interaction of the extracellular matrix that involves a coiled-coil domain, and they assign a novel role to this domain of laminin-1. Based on this, we propose that agrin associates with basal lamina in a polarized way. ; save_ save_ref_11 _Saveframe_category citation _Citation_full ; Meier, T., Gessemann, M., Cavalli, V., Ruegg, M.A. & Wallace, B.G. (1996) AChR phophorylation and aggregation induced by an agrin fragment that lacks the binding domain for a-dystroglycan. J. Cell Sci. 112: 1213-1223. ; _Citation_title 'AChR phosphorylation and aggregation induced by an agrin fragment that lacks the binding domain for alpha-dystroglycan.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8654359 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Meier T. . . 2 Gesemann M. . . 3 Cavalli V. . . 4 Ruegg M.A. A. . 5 Wallace B.G. G. . stop_ _Journal_abbreviation 'EMBO J.' _Journal_name_full 'The EMBO journal' _Journal_volume 15 _Journal_issue 11 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 2625 _Page_last 2631 _Year 1996 _Details ; Agrin induces both phosphorylation and aggregation of nicotinic acetylcholine receptors (AChRs) when added to myotubes in culture, apparently by binding to a specific receptor on the myotube surface. One such agrin receptor is alpha-dystroglycan, although binding to alpha-dystroglycan appears not to mediate AChR aggregation. To determine whether agrin-induced AChR phosphorylation is mediated by alpha-dystroglycan or by a different agrin receptor, fragments of recombinant agrin that differ in affinity for alpha-dystroglycan were examined for their ability to induce AChR phosphorylation and aggregation in mouse C2 myotubes. The carboxy-terminal 95 kDa agrin fragment agrin-c95(A0B0), which binds to alpha-dystroglycan with high affinity, failed to induce AChR phosphorylation and aggregation. In contrast, agrin-c95(A4B8) which binds less strongly to alpha-dystroglycan, induced both phosphorylation and aggregation, as did a small 21 kDa fragment of agrin, agrin-c21(B8), that completely lacks the binding domain for alpha-dystroglycan. We conclude that agrin-induced AChR phosphorylation and aggregation are triggered by an agrin receptor that is distinct from alpha-dystroglycan. ; save_ save_ref_12 _Saveframe_category citation _Citation_full ; Hohenester, E., Tisi, D., Talts, J.F., & Timpl, R. (1999) The crystal structure of a laminin G-like module reveals the molecular basis of a-dystroglycan binding to laminins, perlecan, and agrin. Molecular Cell 4: 783-792. ; _Citation_title 'The crystal structure of a laminin G-like module reveals the molecular basis of alpha-dystroglycan binding to laminins, perlecan, and agrin.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10619025 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Hohenester E. . . 2 Tisi D. . . 3 Talts J.F. F. . 4 Timpl R. . . stop_ _Journal_abbreviation 'Mol. Cell' _Journal_name_full 'Molecular cell' _Journal_volume 4 _Journal_issue 5 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 783 _Page_last 792 _Year 1999 _Details ; Laminin G-like (LG) modules in the extracellular matrix glycoproteins laminin, perlecan, and agrin mediate the binding to heparin and the cell surface receptor alpha-dystroglycan (alpha-DG). These interactions are crucial to basement membrane assembly, as well as muscle and nerve cell function. The crystal structure of the laminin alpha 2 chain LG5 module reveals a 14-stranded beta sandwich. A calcium ion is bound to one edge of the sandwich by conserved acidic residues and is surrounded by residues implicated in heparin and alpha-DG binding. A calcium-coordinated sulfate ion is suggested to mimic the binding of anionic oligosaccharides. The structure demonstrates a conserved function of the LG module in calcium-dependent lectin-like alpha-DG binding. ; save_ save_ref_13 _Saveframe_category citation _Citation_full ; Wallace, B.G. (1988) Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester, J. Cell Biol. 107: 267-278. ; _Citation_title 'Regulation of agrin-induced acetylcholine receptor aggregation by Ca++ and phorbol ester.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 2839519 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wallace B.G. G. . stop_ _Journal_abbreviation 'J. Cell Biol.' _Journal_name_full 'The Journal of cell biology' _Journal_volume 107 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 267 _Page_last 278 _Year 1988 _Details ; Agrin, a protein extracted from the electric organ of Torpedo californica, induces the formation of specializations on cultured chick myotubes that resemble the postsynaptic apparatus at the neuromuscular junction. The aim of the studies reported here was to characterize the effects of agrin on the distribution of acetylcholine receptors (AChRs) and cholinesterase as a step toward determining agrin's mechanism of action. When agrin was added to the medium bathing chick myotubes small (less than 4 micron 2) aggregates of AChRs began to appear within 2 h and increased rapidly in number until 4 h. Over the next 12-20 h the number of aggregates per myotube decreased as the mean size of each aggregate increased to approximately 15 micron 2. The accumulation of AChRs into agrin-induced aggregates occurred primarily by lateral migration of AChRs already in the myotube plasma membrane at the time agrin was added to the cultures. Aggregates of AChRs and cholinesterase remained as long as agrin was present in the medium; if agrin was removed the number of aggregates declined slowly. The formation and maintenance of agrin-induced AChR aggregates required Ca++, Co++ and Mn++ inhibited agrin-induced AChR aggregation and increased the rate of aggregate dispersal. Mg++ and Sr++ could not substitute for Ca++. Agrin-induced receptor aggregation also was inhibited by phorbol 12-myristate 13-acetate, an activator of protein kinase C, and by inhibitors of energy metabolism. The similarities between agrin's effects on cultured myotubes and events that occur during formation of neuromuscular junctions support the hypothesis that axon terminals release molecules similar to agrin that induce the differentiation of the postsynaptic apparatus. ; save_ save_ref_14 _Saveframe_category citation _Citation_full ; Deyst, K.A., Ma, J. & Fallon, J.R. (1995) Agrin: toward a molecular understanding of synapse regeneration. Neurosurgery 37: 71-77. ; _Citation_title 'Agrin: toward a molecular understanding of synapse regeneration.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8587694 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Deyst K.A. A. . 2 Ma J. . . 3 Fallon J.R. R. . stop_ _Journal_abbreviation Neurosurgery _Journal_name_full Neurosurgery _Journal_volume 37 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 71 _Page_last 77 _Year 1995 _Details ; One of the foremost challenges to repairing damage after stroke, trauma, or disease is the regeneration of synaptic connections between neurons. Here, we consider recent strides in our understanding of the molecular basis of synapse formation and regeneration. We will focus on the protein agrin, a key player in synaptogenesis at neuromuscular junctions and perhaps at central nervous system synapses as well. Insights into agrin and its receptor could guide the development of rational therapies to combat neuronal degeneration. We will also consider recent surprising and provocative data linking the mechanisms of synapse formation and the cellular pathology in Duchenne muscular dystrophy. ; save_ ################################## # Molecular system description # ################################## save_system_agrin-G3 _Saveframe_category molecular_system _Mol_system_name 'B0 isoform of the 3rd(C-terminal) globular domain of agrin' _Abbreviation_common agrin-G3 _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label agrin-G3 $agrin_G3_monomer 'Ca 2+' $CA stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all disulfide bound' loop_ _Biological_function 'domain acts as a signal to induce aggregation (clustering) of acetylcholine receptors on the postynaptic membrane (muscle) of neuromuscular junctions.' stop_ _Database_query_date . _Details 'oligomeric state was determined by by analytical ultracentrifugation' save_ ######################## # Monomeric polymers # ######################## save_agrin_G3_monomer _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common agrin-G3 _Abbreviation_common agrin-G3 _Molecular_mass 21310 _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 195 _Mol_residue_sequence ; GSEKVIIEKAAGDAEAIAFD GRTYMEYHNAVTKSEKALQS NHFELSIKTEATQGLILWSG KGLERSDYIALAIVDGFVQM MYDLGSKPVVLRSTVPINTN HWTHIKAYRVQREGSLQVGN EAPITGSSPLGATQLDTDGA LWLGGMERLSVAHKLPKAYS TGFIGCIRDVIVDRQELHLV EDALNNPTILHCSAK ; loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 . GLY 2 . SER 3 1748 GLU 4 1749 LYS 5 1750 VAL 6 1751 ILE 7 1752 ILE 8 1753 GLU 9 1754 LYS 10 1755 ALA 11 1756 ALA 12 1757 GLY 13 1758 ASP 14 1759 ALA 15 1760 GLU 16 1761 ALA 17 1762 ILE 18 1763 ALA 19 1764 PHE 20 1765 ASP 21 1766 GLY 22 1767 ARG 23 1768 THR 24 1769 TYR 25 1770 MET 26 1771 GLU 27 1772 TYR 28 1773 HIS 29 1774 ASN 30 1775 ALA 31 1776 VAL 32 1777 THR 33 1778 LYS 34 1779 SER 35 1780 GLU 36 1781 LYS 37 1782 ALA 38 1783 LEU 39 1784 GLN 40 1785 SER 41 1786 ASN 42 1787 HIS 43 1788 PHE 44 1789 GLU 45 1790 LEU 46 1791 SER 47 1792 ILE 48 1793 LYS 49 1794 THR 50 1795 GLU 51 1796 ALA 52 1797 THR 53 1798 GLN 54 1799 GLY 55 1800 LEU 56 1801 ILE 57 1802 LEU 58 1803 TRP 59 1804 SER 60 1805 GLY 61 1806 LYS 62 1807 GLY 63 1808 LEU 64 1809 GLU 65 1810 ARG 66 1811 SER 67 1812 ASP 68 1813 TYR 69 1814 ILE 70 1815 ALA 71 1816 LEU 72 1817 ALA 73 1818 ILE 74 1819 VAL 75 1820 ASP 76 1821 GLY 77 1822 PHE 78 1823 VAL 79 1824 GLN 80 1825 MET 81 1826 MET 82 1827 TYR 83 1828 ASP 84 1829 LEU 85 1830 GLY 86 1831 SER 87 1832 LYS 88 1833 PRO 89 1834 VAL 90 1835 VAL 91 1836 LEU 92 1837 ARG 93 1838 SER 94 1839 THR 95 1840 VAL 96 1841 PRO 97 1842 ILE 98 1843 ASN 99 1844 THR 100 1845 ASN 101 1846 HIS 102 1847 TRP 103 1848 THR 104 1849 HIS 105 1850 ILE 106 1851 LYS 107 1852 ALA 108 1853 TYR 109 1854 ARG 110 1855 VAL 111 1856 GLN 112 1857 ARG 113 1858 GLU 114 1859 GLY 115 1860 SER 116 1861 LEU 117 1862 GLN 118 1863 VAL 119 1864 GLY 120 1865 ASN 121 1866 GLU 122 1867 ALA 123 1868 PRO 124 1869 ILE 125 1870 THR 126 1871 GLY 127 1872 SER 128 1873 SER 129 1874 PRO 130 1875 LEU 131 1876 GLY 132 1877 ALA 133 1878 THR 134 1879 GLN 135 1880 LEU 136 1881 ASP 137 1882 THR 138 1883 ASP 139 1884 GLY 140 1885 ALA 141 1886 LEU 142 1887 TRP 143 1888 LEU 144 1889 GLY 145 1890 GLY 146 1891 MET 147 1892 GLU 148 1893 ARG 149 1894 LEU 150 1895 SER 151 1896 VAL 152 1897 ALA 153 1898 HIS 154 1899 LYS 155 1900 LEU 156 1901 PRO 157 1902 LYS 158 1903 ALA 159 1904 TYR 160 1905 SER 161 1906 THR 162 1907 GLY 163 1908 PHE 164 1909 ILE 165 1910 GLY 166 1911 CYS 167 1912 ILE 168 1913 ARG 169 1914 ASP 170 1915 VAL 171 1916 ILE 172 1917 VAL 173 1918 ASP 174 1919 ARG 175 1920 GLN 176 1921 GLU 177 1922 LEU 178 1923 HIS 179 1924 LEU 180 1925 VAL 181 1926 GLU 182 1927 ASP 183 1928 ALA 184 1929 LEU 185 1930 ASN 186 1931 ASN 187 1932 PRO 188 1933 THR 189 1934 ILE 190 1935 LEU 191 1936 HIS 192 1937 CYS 193 1938 SER 194 1939 ALA 195 1940 LYS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2008-08-19 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1Q56 'Nmr Structure Of The B0 Isoform Of The Agrin G3 Domain In Its Ca2+ Bound State' 100.00 195 100.00 100.00 1.55e-111 stop_ save_ ############# # Ligands # ############# save_CA _Saveframe_category ligand _Mol_type non-polymer _Name_common "CA (CALCIUM ION)" _BMRB_code . _PDB_code CA _Molecular_mass 40.078 _Mol_charge 2 _Mol_paramagnetic . _Mol_aromatic no _Details ; Information obtained from PDB's Chemical Component Dictionary at http://wwpdb-remediation.rutgers.edu/downloads.html Downloaded on Thu Jul 21 10:35:28 2011 ; loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons CA CA CA . 2 . ? stop_ _Mol_thiol_state . _Sequence_homology_query_date . save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $agrin_G3_monomer chicken 9031 Eukaryota Metazoa Gallus gallus stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_type _Vector_name _Details $agrin_G3_monomer 'recombinant technology' 'E. coli' Escherichia coli JM109 plasmid 'pGSTHis: a derivative of pGEX-1 (Amersham Pharmacia Biotech) that contains a 6xHis tag followed by a thrombin cleavage site between the gluthathione S-transferase (GST) carrier protein and the agrin-G3 domain.' ; The recombinant agrin-G3 domain corresponds to residues 1748-1940 of the B0 mRNA alternative splice variant of the C-terminal globular domain of chicken agrin. The sequence is given in SWISS-PROT under accession number P31696. This sequence corresponds to the "B11" isoform of the agrin G3 domain. To obtain the sequence of the BO isoform of agrin-G3 for which NMR assignments are reported -> follow the hyperlink "Agrin related protein 2" under "VARSPLIC 1783 1793" Residues 1748-1940 of the sequence you arrive at from this hyperlink correspond to residues 3-195 of the agrin-G3 domain studied by NMR. The first two residues of the agrin-G3 domain for which NMR assignments are reported, GS, are a cloning artifact (part of a thrombin cleavage site used to separate agrin-G3 from the GST carrier protein used in the recombinant fusion protein). ; stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $agrin_G3_monomer 1.0 mM '[U-13C; U-15N; U-90% 2H]' CaCl2 4 mM . immidazole 10 mM . stop_ save_ save_sample_2 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $agrin_G3_monomer 1.0 mM [U-15N] CaCl2 4 mM . immidazole 10 mM . stop_ save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_3D_HSQC-NOESY-HSQC_(200_ms_mix_time)_1 _Saveframe_category NMR_applied_experiment _Experiment_name '3D HSQC-NOESY-HSQC (200 ms mix time)' _Sample_label . save_ save_deuterium-decoupled_TROSY_versions_of:_2 _Saveframe_category NMR_applied_experiment _Experiment_name 'deuterium-decoupled TROSY versions of:' _Sample_label . save_ save_3D_HNCACB_3 _Saveframe_category NMR_applied_experiment _Experiment_name '3D HNCACB' _Sample_label . save_ save_HNCO_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label . save_ save_HN(CA)CO_5 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _Sample_label . save_ save_3D_15N_TOCSY-HSQC_(39_ms_mix_time)_6 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N TOCSY-HSQC (39 ms mix time)' _Sample_label . save_ save_3D_15N_NOESY-HSQC_(100_mix_time)_7 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N NOESY-HSQC (100 mix time)' _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name '3D HSQC-NOESY-HSQC (200 ms mix time)' _BMRB_pulse_sequence_accession_number . _Details 'NMR spectrometer of UCONN Health Center @ Farmington' save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name 'deuterium-decoupled TROSY versions of:' _BMRB_pulse_sequence_accession_number . _Details 'NMR spectrometer of UCONN Health Center @ Farmington' save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name '3D HNCACB' _BMRB_pulse_sequence_accession_number . _Details 'NMR spectrometer of UCONN Health Center @ Farmington' save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details 'NMR spectrometer of UCONN Health Center @ Farmington' save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CA)CO _BMRB_pulse_sequence_accession_number . _Details 'NMR spectrometer of UCONN Health Center @ Farmington' save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N TOCSY-HSQC (39 ms mix time)' _BMRB_pulse_sequence_accession_number . _Details 'NMR spectrometer of UCONN Health Center @ Farmington' save_ save_NMR_spec_expt__0_7 _Saveframe_category NMR_applied_experiment _Experiment_name '3D 15N NOESY-HSQC (100 mix time)' _BMRB_pulse_sequence_accession_number . _Details 'NMR spectrometer of UCONN Health Center @ Farmington' save_ ####################### # Sample conditions # ####################### save_Ex-Cond_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 6.5 0.1 n/a temperature 298 1 K pressure 1 . atm stop_ save_ save_Ex-Cond_2 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 7.1 0.1 n/a temperature 298 1 K pressure 1 . atm stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_agrin_shifts _Saveframe_category assigned_chemical_shifts _Details ; All aliphatic proton chemical shifts were obtained from a 15N labeled sample. All other chemical shifts were obtained from a 2H/13C/15N labled sample and the values reported are not corrected for 2H isotope effects. ; loop_ _Sample_label $sample_1 $sample_2 stop_ _Sample_conditions_label $Ex-Cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name agrin-G3 _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 2 SER C C 174.31 0.15 1 2 . 2 SER CA C 57.66 0.25 1 3 . 2 SER CB C 62.81 0.25 1 4 . 3 GLU H H 8.66 0.03 1 5 . 3 GLU HA H 4.25 0.07 1 6 . 3 GLU HB2 H 1.91 0.07 2 7 . 3 GLU C C 176.28 0.15 1 8 . 3 GLU CA C 56.02 0.25 1 9 . 3 GLU CB C 28.59 0.25 1 10 . 3 GLU N N 123.75 0.10 1 11 . 4 LYS H H 8.27 0.03 1 12 . 4 LYS HA H 4.27 0.07 1 13 . 4 LYS HB2 H 1.65 0.07 2 14 . 4 LYS C C 176.14 0.15 1 15 . 4 LYS CA C 55.55 0.25 1 16 . 4 LYS CB C 31.63 0.25 1 17 . 4 LYS N N 123.22 0.10 1 18 . 5 VAL H H 8.10 0.03 1 19 . 5 VAL HA H 4.05 0.07 1 20 . 5 VAL HB H 1.90 0.07 1 21 . 5 VAL HG1 H 0.80 0.07 2 22 . 5 VAL C C 175.72 0.15 1 23 . 5 VAL CA C 61.64 0.25 1 24 . 5 VAL CB C 31.63 0.25 1 25 . 5 VAL N N 123.47 0.10 1 26 . 6 ILE H H 8.25 0.03 1 27 . 6 ILE HA H 4.09 0.07 1 28 . 6 ILE HB H 1.75 0.07 1 29 . 6 ILE C C 175.86 0.15 1 30 . 6 ILE CA C 60.00 0.25 1 31 . 6 ILE CB C 37.26 0.25 1 32 . 6 ILE N N 126.83 0.10 1 33 . 7 ILE H H 8.20 0.03 1 34 . 7 ILE HA H 4.09 0.07 1 35 . 7 ILE HB H 1.83 0.07 1 36 . 7 ILE C C 175.86 0.15 1 37 . 7 ILE CA C 60.00 0.25 1 38 . 7 ILE CB C 37.26 0.25 1 39 . 7 ILE N N 127.01 0.10 1 40 . 8 GLU H H 8.42 0.03 1 41 . 8 GLU C C 176.00 0.15 1 42 . 8 GLU CA C 55.78 0.25 1 43 . 8 GLU CB C 29.30 0.25 1 44 . 8 GLU N N 126.70 0.10 1 45 . 9 LYS H H 8.30 0.03 1 46 . 9 LYS HA H 4.18 0.07 1 47 . 9 LYS C C 176.00 0.15 1 48 . 9 LYS CA C 55.31 0.25 1 49 . 9 LYS CB C 31.87 0.25 1 50 . 9 LYS N N 123.93 0.10 1 51 . 10 ALA H H 8.36 0.03 1 52 . 10 ALA HA H 4.45 0.07 1 53 . 10 ALA HB H 1.35 0.07 1 54 . 10 ALA C C 177.55 0.15 1 55 . 10 ALA CA C 51.56 0.25 1 56 . 10 ALA CB C 18.04 0.25 1 57 . 10 ALA N N 126.77 0.10 1 58 . 11 ALA H H 8.29 0.03 1 59 . 11 ALA HA H 4.31 0.07 1 60 . 11 ALA HB H 1.29 0.07 1 61 . 11 ALA C C 178.39 0.15 1 62 . 11 ALA CA C 51.80 0.25 1 63 . 11 ALA CB C 18.04 0.25 1 64 . 11 ALA N N 124.48 0.10 1 65 . 12 GLY H H 8.27 0.03 1 66 . 12 GLY HA2 H 3.91 0.07 2 67 . 12 GLY C C 174.17 0.15 1 68 . 12 GLY CA C 44.53 0.25 1 69 . 12 GLY N N 108.63 0.10 1 70 . 13 ASP H H 8.20 0.03 1 71 . 13 ASP HA H 4.72 0.07 1 72 . 13 ASP HB2 H 2.55 0.07 2 73 . 13 ASP C C 176.28 0.15 1 74 . 13 ASP CA C 54.14 0.25 1 75 . 13 ASP CB C 40.31 0.25 1 76 . 13 ASP N N 121.52 0.10 1 77 . 14 ALA H H 8.17 0.03 1 78 . 14 ALA HA H 4.18 0.07 1 79 . 14 ALA HB H 1.30 0.07 1 80 . 14 ALA C C 177.69 0.15 1 81 . 14 ALA CA C 51.79 0.25 1 82 . 14 ALA CB C 18.04 0.25 1 83 . 14 ALA N N 124.21 0.10 1 84 . 15 GLU H H 8.22 0.03 1 85 . 15 GLU HA H 4.26 0.07 1 86 . 15 GLU HB2 H 1.93 0.07 2 87 . 15 GLU C C 175.58 0.15 1 88 . 15 GLU CA C 56.02 0.25 1 89 . 15 GLU CB C 29.06 0.25 1 90 . 15 GLU N N 119.60 0.10 1 91 . 16 ALA H H 8.22 0.03 1 92 . 16 ALA HA H 4.99 0.07 1 93 . 16 ALA HB H 1.47 0.07 1 94 . 16 ALA C C 176.56 0.15 1 95 . 16 ALA CA C 50.39 0.25 1 96 . 16 ALA CB C 20.62 0.25 1 97 . 16 ALA N N 124.77 0.10 1 98 . 17 ILE H H 8.55 0.03 1 99 . 17 ILE HA H 4.63 0.07 1 100 . 17 ILE C C 174.60 0.15 1 101 . 17 ILE CA C 57.89 0.25 1 102 . 17 ILE CB C 37.49 0.25 1 103 . 17 ILE N N 123.89 0.10 1 104 . 18 ALA H H 8.33 0.03 1 105 . 18 ALA HA H 5.17 0.07 1 106 . 18 ALA HB H 1.11 0.07 1 107 . 18 ALA C C 175.16 0.15 1 108 . 18 ALA CA C 50.16 0.25 1 109 . 18 ALA CB C 20.39 0.25 1 110 . 18 ALA N N 127.51 0.10 1 111 . 19 PHE H H 8.95 0.03 1 112 . 19 PHE HA H 4.45 0.07 1 113 . 19 PHE HB2 H 2.77 0.07 2 114 . 19 PHE C C 176.71 0.15 1 115 . 19 PHE CA C 56.95 0.25 1 116 . 19 PHE CB C 40.31 0.25 1 117 . 19 PHE N N 118.73 0.10 1 118 . 20 ASP H H 8.03 0.03 1 119 . 20 ASP HA H 4.53 0.07 1 120 . 20 ASP HB2 H 3.19 0.07 2 121 . 20 ASP C C 176.42 0.15 1 122 . 20 ASP CA C 52.50 0.25 1 123 . 20 ASP CB C 40.31 0.25 1 124 . 20 ASP N N 123.29 0.10 1 125 . 21 GLY H H 7.83 0.03 1 126 . 21 GLY HA2 H 3.11 0.07 2 127 . 21 GLY HA3 H 4.24 0.07 2 128 . 21 GLY C C 173.47 0.15 1 129 . 21 GLY CA C 45.23 0.25 1 130 . 21 GLY N N 112.98 0.10 1 131 . 22 ARG H H 8.07 0.03 1 132 . 22 ARG HA H 4.45 0.07 1 133 . 22 ARG HB2 H 1.47 0.07 2 134 . 22 ARG C C 175.02 0.15 1 135 . 22 ARG CA C 53.44 0.25 1 136 . 22 ARG CB C 29.06 0.25 1 137 . 22 ARG N N 120.12 0.10 1 138 . 23 THR H H 7.79 0.03 1 139 . 23 THR HA H 4.00 0.07 1 140 . 23 THR HB H 4.18 0.07 1 141 . 23 THR HG2 H 1.04 0.07 1 142 . 23 THR C C 171.22 0.15 1 143 . 23 THR CA C 61.87 0.25 1 144 . 23 THR CB C 69.61 0.25 1 145 . 23 THR N N 119.47 0.10 1 146 . 24 TYR H H 7.89 0.03 1 147 . 24 TYR HA H 5.62 0.07 1 148 . 24 TYR C C 173.19 0.15 1 149 . 24 TYR CA C 52.97 0.25 1 150 . 24 TYR CB C 37.73 0.25 1 151 . 24 TYR N N 127.09 0.10 1 152 . 25 MET H H 8.94 0.03 1 153 . 25 MET C C 176.42 0.15 1 154 . 25 MET CB C 33.28 0.25 1 155 . 25 MET N N 115.43 0.10 1 156 . 26 GLU H H 8.71 0.03 1 157 . 26 GLU HA H 4.73 0.07 1 158 . 26 GLU C C 173.05 0.15 1 159 . 26 GLU CA C 53.90 0.25 1 160 . 26 GLU CB C 29.76 0.25 1 161 . 26 GLU N N 120.52 0.10 1 162 . 27 TYR H H 8.85 0.03 1 163 . 27 TYR HA H 4.54 0.07 1 164 . 27 TYR HB2 H 2.37 0.07 2 165 . 27 TYR C C 177.41 0.15 1 166 . 27 TYR CA C 55.78 0.25 1 167 . 27 TYR CB C 40.55 0.25 1 168 . 27 TYR N N 123.05 0.10 1 169 . 28 HIS H H 9.62 0.03 1 170 . 28 HIS HA H 5.53 0.07 1 171 . 28 HIS C C 173.19 0.15 1 172 . 28 HIS CA C 55.31 0.25 1 173 . 28 HIS CB C 28.12 0.25 1 174 . 28 HIS N N 121.23 0.10 1 175 . 29 ASN H H 8.87 0.03 1 176 . 29 ASN HA H 5.71 0.07 1 177 . 29 ASN HB2 H 2.57 0.07 2 178 . 29 ASN HB3 H 2.93 0.07 2 179 . 29 ASN HD21 H 6.71 0.03 2 180 . 29 ASN HD22 H 7.51 0.03 2 181 . 29 ASN C C 174.31 0.15 1 182 . 29 ASN CA C 52.97 0.25 1 183 . 29 ASN CB C 36.56 0.25 1 184 . 29 ASN CG C 178.53 0.15 1 185 . 29 ASN N N 127.14 0.10 1 186 . 29 ASN ND2 N 112.87 0.10 1 187 . 30 ALA H H 8.21 0.03 1 188 . 30 ALA HA H 4.27 0.07 1 189 . 30 ALA HB H 1.20 0.07 1 190 . 30 ALA C C 172.62 0.15 1 191 . 30 ALA CA C 50.39 0.25 1 192 . 30 ALA CB C 19.92 0.25 1 193 . 30 ALA N N 123.24 0.10 1 194 . 31 VAL H H 9.70 0.03 1 195 . 31 VAL C C 176.00 0.15 1 196 . 31 VAL CA C 60.47 0.25 1 197 . 31 VAL CB C 35.62 0.25 1 198 . 31 VAL N N 128.84 0.10 1 199 . 32 THR H H 9.15 0.03 1 200 . 32 THR C C 170.80 0.15 1 201 . 32 THR CA C 58.59 0.25 1 202 . 32 THR CB C 67.03 0.25 1 203 . 32 THR N N 113.16 0.10 1 204 . 34 SER H H 8.35 0.03 1 205 . 34 SER HA H 4.70 0.07 1 206 . 34 SER HB2 H 3.94 0.07 2 207 . 34 SER C C 176.46 0.15 1 208 . 34 SER N N 112.62 0.10 1 209 . 35 GLU H H 8.11 0.00 1 210 . 35 GLU HA H 4.21 0.07 1 211 . 35 GLU N N 120.58 0.10 1 212 . 36 LYS C C 175.86 0.15 1 213 . 36 LYS CA C 53.20 0.25 1 214 . 37 ALA H H 8.52 0.03 1 215 . 37 ALA HA H 5.08 0.07 1 216 . 37 ALA C C 176.56 0.15 1 217 . 37 ALA CA C 46.87 0.25 1 218 . 37 ALA CB C 18.04 0.25 1 219 . 37 ALA N N 127.04 0.10 1 220 . 38 LEU H H 7.79 0.03 1 221 . 38 LEU HA H 5.41 0.07 1 222 . 38 LEU C C 174.17 0.15 1 223 . 38 LEU CA C 53.20 0.25 1 224 . 38 LEU CB C 45.47 0.25 1 225 . 38 LEU N N 118.52 0.10 1 226 . 39 GLN H H 9.31 0.03 1 227 . 39 GLN HA H 5.17 0.07 1 228 . 39 GLN C C 174.74 0.15 1 229 . 39 GLN CA C 56.95 0.25 1 230 . 39 GLN CB C 33.05 0.25 1 231 . 39 GLN N N 125.85 0.10 1 232 . 40 SER H H 8.16 0.03 1 233 . 40 SER HA H 5.49 0.07 1 234 . 40 SER C C 173.61 0.15 1 235 . 40 SER CA C 56.48 0.25 1 236 . 40 SER CB C 60.00 0.25 1 237 . 40 SER N N 116.00 0.10 1 238 . 41 ASN H H 8.96 0.03 1 239 . 41 ASN HA H 5.62 0.07 1 240 . 41 ASN C C 173.33 0.15 1 241 . 41 ASN CA C 52.73 0.25 1 242 . 41 ASN CB C 36.56 0.25 1 243 . 41 ASN N N 122.30 0.10 1 244 . 42 HIS H H 7.35 0.03 1 245 . 42 HIS HA H 4.82 0.07 1 246 . 42 HIS C C 173.33 0.15 1 247 . 42 HIS CB C 30.23 0.25 1 248 . 42 HIS N N 116.32 0.10 1 249 . 43 PHE H H 9.22 0.03 1 250 . 43 PHE HA H 5.62 0.07 1 251 . 43 PHE HB2 H 2.80 0.07 2 252 . 43 PHE C C 174.46 0.15 1 253 . 43 PHE CA C 55.08 0.25 1 254 . 43 PHE CB C 41.72 0.25 1 255 . 43 PHE N N 124.38 0.10 1 256 . 44 GLU H H 8.92 0.03 1 257 . 44 GLU HA H 5.44 0.07 1 258 . 44 GLU HB2 H 1.95 0.07 2 259 . 44 GLU C C 174.32 0.15 1 260 . 44 GLU CA C 54.61 0.25 1 261 . 44 GLU CB C 32.81 0.25 1 262 . 44 GLU N N 121.23 0.10 1 263 . 45 LEU H H 8.42 0.03 1 264 . 45 LEU HA H 5.08 0.07 1 265 . 45 LEU C C 174.32 0.15 1 266 . 45 LEU CA C 55.31 0.25 1 267 . 45 LEU CB C 42.19 0.25 1 268 . 45 LEU N N 116.57 0.10 1 269 . 46 SER H H 8.26 0.03 1 270 . 46 SER HA H 5.89 0.07 1 271 . 46 SER HB2 H 3.73 0.07 2 272 . 46 SER C C 173.19 0.15 1 273 . 46 SER CA C 56.95 0.25 1 274 . 46 SER CB C 64.45 0.25 1 275 . 46 SER N N 115.80 0.10 1 276 . 47 ILE H H 8.97 0.03 1 277 . 47 ILE HA H 5.73 0.07 1 278 . 47 ILE C C 173.19 0.15 1 279 . 47 ILE CA C 58.12 0.25 1 280 . 47 ILE CB C 41.95 0.25 1 281 . 47 ILE N N 117.76 0.10 1 282 . 48 LYS H H 8.01 0.03 1 283 . 48 LYS HA H 4.18 0.07 1 284 . 48 LYS C C 175.30 0.15 1 285 . 48 LYS CA C 54.37 0.25 1 286 . 48 LYS CB C 33.24 0.25 1 287 . 48 LYS N N 123.46 0.10 1 288 . 49 THR H H 9.70 0.03 1 289 . 49 THR HA H 4.63 0.07 1 290 . 49 THR HG2 H 1.04 0.07 1 291 . 49 THR C C 170.80 0.15 1 292 . 49 THR CA C 60.94 0.25 1 293 . 49 THR CB C 68.90 0.25 1 294 . 49 THR N N 123.86 0.10 1 295 . 50 GLU H H 8.52 0.03 1 296 . 50 GLU HA H 4.18 0.07 1 297 . 50 GLU C C 175.30 0.15 1 298 . 50 GLU CA C 54.37 0.25 1 299 . 50 GLU CB C 30.23 0.25 1 300 . 50 GLU N N 123.02 0.10 1 301 . 51 ALA H H 9.04 0.03 1 302 . 51 ALA HA H 4.09 0.07 1 303 . 51 ALA HB H 1.65 0.07 1 304 . 51 ALA C C 175.58 0.15 1 305 . 51 ALA CA C 52.26 0.25 1 306 . 51 ALA CB C 18.75 0.25 1 307 . 51 ALA N N 129.67 0.10 1 308 . 52 THR H H 8.14 0.03 1 309 . 52 THR HA H 3.91 0.07 1 310 . 52 THR HB H 3.81 0.07 1 311 . 52 THR HG2 H 1.74 0.07 1 312 . 52 THR C C 174.88 0.15 1 313 . 52 THR CA C 60.70 0.25 1 314 . 52 THR CB C 68.90 0.25 1 315 . 52 THR N N 105.12 0.10 1 316 . 53 GLN H H 7.45 0.03 1 317 . 53 GLN HA H 5.26 0.07 1 318 . 53 GLN HB2 H 1.65 0.07 2 319 . 53 GLN C C 176.99 0.15 1 320 . 53 GLN CA C 52.26 0.25 1 321 . 53 GLN CB C 29.76 0.25 1 322 . 53 GLN N N 118.43 0.10 1 323 . 54 GLY H H 8.37 0.03 1 324 . 54 GLY HA2 H 3.91 0.07 2 325 . 54 GLY HA3 H 4.72 0.07 2 326 . 54 GLY C C 170.24 0.15 1 327 . 54 GLY CA C 45.23 0.25 1 328 . 54 GLY N N 108.53 0.10 1 329 . 55 LEU H H 8.30 0.03 1 330 . 55 LEU HA H 5.39 0.07 1 331 . 55 LEU C C 174.46 0.15 1 332 . 55 LEU CA C 55.14 0.25 1 333 . 55 LEU CB C 40.78 0.25 1 334 . 55 LEU N N 128.05 0.10 1 335 . 56 ILE H H 9.15 0.03 1 336 . 56 ILE HA H 5.18 0.07 1 337 . 56 ILE C C 175.72 0.15 1 338 . 56 ILE CA C 60.00 0.25 1 339 . 56 ILE CB C 40.78 0.25 1 340 . 56 ILE N N 120.50 0.10 1 341 . 57 LEU H H 8.30 0.03 1 342 . 57 LEU C C 173.19 0.15 1 343 . 57 LEU CA C 51.79 0.25 1 344 . 57 LEU CB C 37.73 0.25 1 345 . 57 LEU N N 127.76 0.10 1 346 . 58 TRP H H 7.60 0.03 1 347 . 58 TRP HE1 H 7.32 0.07 1 348 . 58 TRP C C 174.32 0.15 1 349 . 58 TRP CA C 58.59 0.25 1 350 . 58 TRP CB C 28.12 0.25 1 351 . 58 TRP N N 112.45 0.10 1 352 . 58 TRP NE1 N 130.63 0.10 1 353 . 59 SER H H 7.48 0.03 1 354 . 59 SER C C 172.20 0.15 1 355 . 59 SER CA C 56.01 0.25 1 356 . 59 SER CB C 65.62 0.25 1 357 . 59 SER N N 112.66 0.10 1 358 . 60 GLY H H 9.60 0.03 1 359 . 60 GLY CA C 45.47 0.25 1 360 . 60 GLY N N 106.56 0.10 1 361 . 61 LYS H H 7.95 0.03 1 362 . 61 LYS C C 177.83 0.15 1 363 . 61 LYS CB C 31.87 0.25 1 364 . 61 LYS N N 121.36 0.10 1 365 . 62 GLY H H 9.13 0.03 1 366 . 62 GLY C C 174.74 0.15 1 367 . 62 GLY CA C 44.06 0.25 1 368 . 62 GLY N N 112.76 0.10 1 369 . 63 LEU H H 8.19 0.03 1 370 . 63 LEU HA H 5.08 0.07 1 371 . 63 LEU C C 172.91 0.15 1 372 . 63 LEU CA C 53.90 0.25 1 373 . 63 LEU CB C 40.31 0.25 1 374 . 63 LEU N N 122.95 0.10 1 375 . 64 GLU H H 8.63 0.03 1 376 . 64 GLU HA H 4.81 0.07 1 377 . 64 GLU C C 176.71 0.15 1 378 . 64 GLU CA C 55.55 0.25 1 379 . 64 GLU CB C 32.34 0.25 1 380 . 64 GLU N N 123.94 0.10 1 381 . 65 ARG H H 8.65 0.03 1 382 . 65 ARG HA H 4.72 0.07 1 383 . 65 ARG C C 175.58 0.15 1 384 . 65 ARG CA C 57.42 0.25 1 385 . 65 ARG CB C 27.18 0.25 1 386 . 65 ARG N N 117.81 0.10 1 387 . 66 SER H H 7.60 0.03 1 388 . 66 SER HA H 4.72 0.07 1 389 . 66 SER C C 173.89 0.15 1 390 . 66 SER CA C 57.42 0.25 1 391 . 66 SER CB C 64.22 0.25 1 392 . 66 SER N N 115.38 0.10 1 393 . 67 ASP H H 8.80 0.03 1 394 . 67 ASP HA H 4.54 0.07 1 395 . 67 ASP C C 177.41 0.15 1 396 . 67 ASP CA C 53.67 0.25 1 397 . 67 ASP CB C 40.31 0.25 1 398 . 67 ASP N N 123.62 0.10 1 399 . 68 TYR H H 7.98 0.03 1 400 . 68 TYR HA H 3.73 0.07 4 401 . 68 TYR C C 173.05 0.15 1 402 . 68 TYR CA C 56.25 0.25 1 403 . 68 TYR CB C 40.55 0.25 1 404 . 68 TYR N N 116.41 0.10 1 405 . 69 ILE H H 8.17 0.03 1 406 . 69 ILE HA H 4.81 0.07 1 407 . 69 ILE C C 175.58 0.15 1 408 . 69 ILE CA C 59.30 0.25 1 409 . 69 ILE CB C 40.22 0.25 1 410 . 69 ILE N N 115.81 0.10 1 411 . 70 ALA H H 7.51 0.03 1 412 . 70 ALA HA H 4.45 0.07 1 413 . 70 ALA C C 174.32 0.15 1 414 . 70 ALA CB C 16.17 0.25 1 415 . 70 ALA N N 123.33 0.10 1 416 . 71 LEU H H 9.47 0.03 1 417 . 71 LEU HA H 5.44 0.07 1 418 . 71 LEU HD1 H 0.21 0.07 2 419 . 71 LEU C C 175.02 0.15 1 420 . 71 LEU CA C 52.50 0.25 1 421 . 71 LEU N N 122.41 0.10 1 422 . 72 ALA H H 8.94 0.03 1 423 . 72 ALA HA H 4.72 0.07 1 424 . 72 ALA HB H 0.65 0.07 1 425 . 72 ALA C C 174.03 0.15 1 426 . 72 ALA CA C 49.68 0.25 1 427 . 72 ALA CB C 21.80 0.25 1 428 . 72 ALA N N 125.23 0.10 1 429 . 73 ILE H H 9.36 0.03 1 430 . 73 ILE HA H 4.00 0.07 1 431 . 73 ILE C C 174.32 0.15 1 432 . 73 ILE CA C 60.47 0.25 1 433 . 73 ILE CB C 38.20 0.25 1 434 . 73 ILE N N 121.81 0.10 1 435 . 74 VAL H H 8.71 0.03 1 436 . 74 VAL HA H 4.45 0.07 1 437 . 74 VAL HB H 1.93 0.07 1 438 . 74 VAL C C 176.00 0.15 1 439 . 74 VAL CA C 60.70 0.25 1 440 . 74 VAL CB C 33.28 0.25 1 441 . 74 VAL N N 125.76 0.10 1 442 . 75 ASP H H 8.63 0.03 1 443 . 75 ASP HA H 4.27 0.07 1 444 . 75 ASP C C 175.72 0.15 1 445 . 75 ASP CA C 55.31 0.25 1 446 . 75 ASP CB C 38.90 0.25 1 447 . 75 ASP N N 129.33 0.10 1 448 . 76 GLY H H 8.93 0.03 1 449 . 76 GLY HA2 H 3.91 0.07 2 450 . 76 GLY HA3 H 4.09 0.07 2 451 . 76 GLY C C 171.64 0.15 1 452 . 76 GLY CA C 44.53 0.25 1 453 . 76 GLY N N 101.35 0.10 1 454 . 77 PHE H H 7.56 0.03 1 455 . 77 PHE HA H 4.72 0.07 1 456 . 77 PHE HB2 H 2.74 0.07 2 457 . 77 PHE C C 175.58 0.15 1 458 . 77 PHE CA C 56.02 0.25 1 459 . 77 PHE CB C 41.25 0.00 1 460 . 77 PHE N N 118.61 0.10 1 461 . 78 VAL H H 10.00 0.03 1 462 . 78 VAL HA H 4.41 0.07 1 463 . 78 VAL C C 174.17 0.15 1 464 . 78 VAL CA C 62.58 0.25 1 465 . 78 VAL CB C 30.23 0.25 1 466 . 78 VAL N N 126.10 0.10 1 467 . 79 GLN H H 8.05 0.03 1 468 . 79 GLN HA H 4.81 0.07 1 469 . 79 GLN C C 171.92 0.15 1 470 . 79 GLN CA C 55.31 0.25 1 471 . 79 GLN CB C 29.30 0.25 1 472 . 79 GLN N N 116.55 0.10 1 473 . 80 MET H H 7.69 0.03 1 474 . 80 MET HA H 4.09 0.07 1 475 . 80 MET C C 174.17 0.15 1 476 . 80 MET CA C 53.90 0.25 1 477 . 80 MET CB C 30.00 0.25 1 478 . 80 MET N N 125.48 0.10 1 479 . 81 MET H H 8.63 0.03 1 480 . 81 MET HA H 4.56 0.07 1 481 . 81 MET C C 174.88 0.15 1 482 . 81 MET CA C 56.95 0.25 1 483 . 81 MET CB C 28.59 0.25 1 484 . 81 MET N N 125.58 0.10 1 485 . 82 TYR H H 8.24 0.03 1 486 . 82 TYR HA H 4.09 0.07 1 487 . 82 TYR CA C 52.97 0.25 1 488 . 82 TYR CB C 42.89 0.25 1 489 . 82 TYR N N 127.98 0.10 1 490 . 83 ASP H H 8.55 0.03 1 491 . 83 ASP HA H 4.72 0.07 1 492 . 83 ASP C C 172.06 0.15 1 493 . 83 ASP CA C 55.08 0.25 1 494 . 83 ASP CB C 38.90 0.25 1 495 . 83 ASP N N 123.32 0.10 1 496 . 84 LEU H H 7.51 0.03 1 497 . 84 LEU HA H 4.27 0.07 1 498 . 84 LEU C C 175.02 0.15 1 499 . 84 LEU CA C 52.73 0.25 1 500 . 84 LEU CB C 42.66 0.25 1 501 . 84 LEU N N 117.92 0.10 1 502 . 85 GLY H H 9.27 0.03 1 503 . 85 GLY HA2 H 3.82 0.07 2 504 . 85 GLY CA C 43.36 0.25 1 505 . 85 GLY N N 116.00 0.10 1 506 . 86 SER H H 8.34 0.03 1 507 . 86 SER HA H 4.72 0.07 1 508 . 86 SER HB2 H 3.64 0.07 2 509 . 86 SER HB3 H 3.81 0.07 2 510 . 86 SER C C 175.44 0.15 1 511 . 86 SER CB C 63.98 0.25 1 512 . 86 SER N N 116.40 0.10 1 513 . 87 LYS H H 7.95 0.03 1 514 . 87 LYS HA H 4.18 0.07 1 515 . 87 LYS HB2 H 1.65 0.07 4 516 . 87 LYS HB3 H 1.75 0.07 4 517 . 87 LYS CA C 54.14 0.25 1 518 . 87 LYS CB C 34.22 0.25 1 519 . 87 LYS N N 127.28 0.10 1 520 . 88 PRO HA H 4.24 0.07 1 521 . 88 PRO C C 171.08 0.15 1 522 . 88 PRO CA C 59.06 0.25 1 523 . 88 PRO CB C 34.45 0.25 1 524 . 89 VAL H H 7.64 0.03 1 525 . 89 VAL HA H 4.72 0.07 1 526 . 89 VAL C C 170.66 0.15 1 527 . 89 VAL CA C 60.00 0.25 1 528 . 89 VAL CB C 33.05 0.25 1 529 . 89 VAL N N 124.16 0.10 1 530 . 90 VAL H H 7.58 0.03 1 531 . 90 VAL HA H 4.63 0.07 1 532 . 90 VAL C C 174.74 0.15 1 533 . 90 VAL CA C 60.00 0.25 1 534 . 90 VAL CB C 33.05 0.25 1 535 . 90 VAL N N 124.07 0.10 1 536 . 91 LEU H H 9.26 0.03 1 537 . 91 LEU HA H 4.63 0.07 1 538 . 91 LEU C C 174.74 0.15 1 539 . 91 LEU CA C 52.73 0.25 1 540 . 91 LEU CB C 41.72 0.25 1 541 . 91 LEU N N 129.00 0.10 1 542 . 92 ARG H H 8.54 0.03 1 543 . 92 ARG HA H 4.63 0.07 1 544 . 92 ARG HB2 H 1.57 0.07 2 545 . 92 ARG C C 174.31 0.15 1 546 . 92 ARG CA C 54.84 0.25 1 547 . 92 ARG CB C 30.94 0.25 1 548 . 92 ARG N N 123.40 0.10 1 549 . 93 SER H H 8.22 0.03 1 550 . 93 SER HA H 4.63 0.07 1 551 . 93 SER HB2 H 4.18 0.07 2 552 . 93 SER C C 174.03 0.15 1 553 . 93 SER CA C 56.95 0.25 1 554 . 93 SER CB C 62.34 0.25 1 555 . 93 SER N N 117.82 0.10 1 556 . 94 THR H H 9.70 0.03 1 557 . 94 THR HA H 4.27 0.07 1 558 . 94 THR C C 175.72 0.15 1 559 . 94 THR CA C 61.64 0.25 1 560 . 94 THR CB C 69.84 0.25 1 561 . 94 THR N N 115.64 0.10 1 562 . 95 VAL H H 7.96 0.03 1 563 . 95 VAL HA H 4.54 0.07 1 564 . 95 VAL HB H 1.83 0.07 1 565 . 95 VAL C C 172.77 0.15 1 566 . 95 VAL CA C 59.06 0.25 1 567 . 95 VAL CB C 33.04 0.25 1 568 . 95 VAL N N 125.23 0.10 1 569 . 96 PRO HA H 3.74 0.07 1 570 . 96 PRO C C 177.69 0.15 1 571 . 96 PRO CA C 62.58 0.25 1 572 . 96 PRO CB C 30.23 0.25 1 573 . 97 ILE H H 7.94 0.03 1 574 . 97 ILE HA H 4.69 0.07 1 575 . 97 ILE C C 174.88 0.15 1 576 . 97 ILE CA C 56.01 0.25 1 577 . 97 ILE CB C 40.55 0.25 1 578 . 97 ILE N N 122.65 0.10 1 579 . 98 ASN H H 8.99 0.03 1 580 . 98 ASN HA H 4.69 0.07 1 581 . 98 ASN C C 175.86 0.15 1 582 . 98 ASN CA C 52.73 0.25 1 583 . 98 ASN CB C 33.75 0.25 1 584 . 98 ASN N N 122.03 0.10 1 585 . 99 THR H H 7.88 0.03 1 586 . 99 THR HA H 4.00 0.07 1 587 . 99 THR HB H 4.15 0.07 1 588 . 99 THR HG2 H 0.99 0.07 1 589 . 99 THR C C 174.74 0.15 1 590 . 99 THR CA C 60.23 0.25 1 591 . 99 THR CB C 69.61 0.25 1 592 . 99 THR N N 109.35 0.10 1 593 . 100 ASN H H 8.62 0.03 1 594 . 100 ASN HA H 4.73 0.07 1 595 . 100 ASN HB2 H 2.12 0.07 2 596 . 100 ASN HB3 H 3.20 0.07 2 597 . 100 ASN HD21 H 6.58 0.03 2 598 . 100 ASN HD22 H 7.18 0.03 2 599 . 100 ASN C C 173.61 0.15 1 600 . 100 ASN CA C 52.26 0.25 1 601 . 100 ASN CB C 37.97 0.25 1 602 . 100 ASN CG C 176.85 0.15 1 603 . 100 ASN N N 120.99 0.10 1 604 . 100 ASN ND2 N 109.28 0.10 1 605 . 101 HIS H H 7.68 0.03 1 606 . 101 HIS HA H 4.92 0.07 1 607 . 101 HIS HB2 H 2.83 0.07 2 608 . 101 HIS C C 176.42 0.15 1 609 . 101 HIS CA C 53.00 0.25 1 610 . 101 HIS CB C 30.94 0.25 1 611 . 101 HIS N N 114.70 0.10 1 612 . 102 TRP H H 8.86 0.03 1 613 . 102 TRP HA H 4.72 0.07 1 614 . 102 TRP HD1 H 7.21 0.07 1 615 . 102 TRP HE1 H 10.26 0.03 1 616 . 102 TRP C C 177.69 0.15 1 617 . 102 TRP CA C 58.36 0.25 1 618 . 102 TRP CB C 28.36 0.25 1 619 . 102 TRP N N 127.17 0.10 1 620 . 102 TRP NE1 N 130.63 0.10 1 621 . 103 THR H H 9.81 0.03 1 622 . 103 THR HA H 4.63 0.07 1 623 . 103 THR C C 172.21 0.15 1 624 . 103 THR CA C 62.11 0.25 1 625 . 103 THR CB C 71.25 0.25 1 626 . 103 THR N N 123.01 0.10 1 627 . 104 HIS H H 9.29 0.03 1 628 . 104 HIS HA H 5.17 0.07 1 629 . 104 HIS C C 173.62 0.15 1 630 . 104 HIS CA C 55.78 0.25 1 631 . 104 HIS CB C 30.00 0.25 1 632 . 104 HIS N N 128.51 0.10 1 633 . 105 ILE H H 9.13 0.03 1 634 . 105 ILE HA H 4.63 0.07 1 635 . 105 ILE HB H 1.54 0.07 1 636 . 105 ILE C C 173.89 0.15 1 637 . 105 ILE CA C 60.47 0.25 1 638 . 105 ILE CB C 40.08 0.25 1 639 . 105 ILE N N 126.68 0.10 1 640 . 106 LYS H H 8.72 0.03 1 641 . 106 LYS HA H 4.90 0.07 1 642 . 106 LYS HB2 H 1.65 0.07 2 643 . 106 LYS C C 174.32 0.15 1 644 . 106 LYS CA C 56.95 0.25 1 645 . 106 LYS CB C 34.45 0.25 1 646 . 106 LYS N N 125.81 0.10 1 647 . 107 ALA H H 9.23 0.03 1 648 . 107 ALA HA H 5.35 0.07 1 649 . 107 ALA HB H 1.47 0.07 1 650 . 107 ALA C C 171.08 0.15 1 651 . 107 ALA CA C 49.92 0.25 1 652 . 107 ALA CB C 22.02 0.25 1 653 . 107 ALA N N 131.08 0.10 1 654 . 108 TYR H H 8.90 0.03 1 655 . 108 TYR HA H 5.27 0.07 1 656 . 108 TYR C C 176.00 0.15 1 657 . 108 TYR CA C 55.31 0.25 1 658 . 108 TYR CB C 35.39 0.25 1 659 . 108 TYR N N 126.32 0.10 1 660 . 109 ARG H H 8.16 0.03 1 661 . 109 ARG HA H 4.36 0.07 1 662 . 109 ARG C C 175.58 0.15 1 663 . 109 ARG CA C 58.36 0.25 1 664 . 109 ARG CB C 25.54 0.25 1 665 . 109 ARG N N 116.16 0.10 1 666 . 110 VAL H H 8.47 0.03 1 667 . 110 VAL HA H 4.45 0.07 1 668 . 110 VAL C C 179.24 0.15 1 669 . 110 VAL CA C 57.66 0.25 1 670 . 110 VAL CB C 29.53 0.25 1 671 . 110 VAL N N 120.33 0.10 1 672 . 111 GLN H H 8.13 0.03 1 673 . 111 GLN HA H 4.54 0.07 1 674 . 111 GLN HB2 H 2.11 0.07 2 675 . 111 GLN HB3 H 1.85 0.07 2 676 . 111 GLN HG2 H 2.34 0.07 2 677 . 111 GLN HG3 H 2.44 0.07 2 678 . 111 GLN HE21 H 6.76 0.03 2 679 . 111 GLN HE22 H 7.38 0.03 2 680 . 111 GLN C C 178.11 0.15 1 681 . 111 GLN CA C 56.48 0.25 1 682 . 111 GLN CB C 29.53 0.25 1 683 . 111 GLN CD C 179.66 0.15 1 684 . 111 GLN N N 123.29 0.10 1 685 . 111 GLN NE2 N 112.12 0.10 1 686 . 112 ARG H H 8.67 0.03 1 687 . 112 ARG HA H 4.72 0.07 1 688 . 112 ARG C C 175.58 0.15 1 689 . 112 ARG CA C 55.31 0.25 1 690 . 112 ARG CB C 35.16 0.25 1 691 . 112 ARG N N 122.66 0.10 1 692 . 113 GLU H H 7.89 0.03 1 693 . 113 GLU C C 175.02 0.15 1 694 . 113 GLU CA C 56.95 0.25 1 695 . 113 GLU CB C 32.58 0.25 1 696 . 113 GLU N N 127.28 0.10 1 697 . 114 GLY H H 9.33 0.03 1 698 . 114 GLY HA2 H 3.64 0.07 2 699 . 114 GLY C C 173.19 0.15 1 700 . 114 GLY CA C 43.36 0.25 1 701 . 114 GLY N N 116.63 0.10 1 702 . 115 SER H H 8.69 0.03 1 703 . 115 SER HA H 5.26 0.07 1 704 . 115 SER C C 171.92 0.15 1 705 . 115 SER CA C 55.78 0.25 1 706 . 115 SER CB C 63.52 0.25 1 707 . 115 SER N N 115.80 0.10 1 708 . 116 LEU H H 9.07 0.03 1 709 . 116 LEU HA H 5.08 0.07 1 710 . 116 LEU C C 173.47 0.15 1 711 . 116 LEU CA C 52.73 0.25 1 712 . 116 LEU CB C 45.70 0.25 1 713 . 116 LEU N N 128.98 0.10 1 714 . 117 GLN H H 9.00 0.03 1 715 . 117 GLN HA H 4.54 0.07 1 716 . 117 GLN C C 173.19 0.15 1 717 . 117 GLN CA C 55.08 0.25 1 718 . 117 GLN CB C 30.94 0.25 1 719 . 117 GLN N N 126.40 0.10 1 720 . 118 VAL H H 10.14 0.03 1 721 . 118 VAL HA H 4.72 0.07 1 722 . 118 VAL HG1 H 0.39 0.07 2 723 . 118 VAL C C 176.00 0.15 1 724 . 118 VAL CA C 60.47 0.25 1 725 . 118 VAL CB C 30.94 0.25 1 726 . 118 VAL N N 132.43 0.10 1 727 . 119 GLY H H 9.18 0.03 1 728 . 119 GLY HA2 H 4.00 0.07 2 729 . 119 GLY C C 175.16 0.15 1 730 . 119 GLY CA C 46.40 0.25 1 731 . 119 GLY N N 114.27 0.10 1 732 . 120 ASN H H 8.80 0.03 1 733 . 120 ASN HA H 4.90 0.07 1 734 . 120 ASN HB2 H 2.48 0.07 2 735 . 120 ASN HB3 H 2.93 0.07 2 736 . 120 ASN HD21 H 7.52 0.03 2 737 . 120 ASN HD22 H 6.83 0.03 2 738 . 120 ASN C C 175.58 0.15 1 739 . 120 ASN CA C 51.56 0.25 1 740 . 120 ASN CB C 37.97 0.25 1 741 . 120 ASN CG C 177.97 0.15 1 742 . 120 ASN N N 124.00 0.10 1 743 . 120 ASN ND2 N 112.75 0.10 1 744 . 121 GLU H H 7.53 0.03 1 745 . 121 GLU HA H 4.36 0.07 1 746 . 121 GLU C C 174.88 0.15 1 747 . 121 GLU CA C 55.08 0.25 1 748 . 121 GLU CB C 28.59 0.25 1 749 . 121 GLU N N 120.86 0.10 1 750 . 122 ALA H H 8.27 0.03 1 751 . 122 ALA HA H 4.09 0.07 1 752 . 122 ALA C C 176.28 0.15 1 753 . 122 ALA CA C 49.69 0.25 1 754 . 122 ALA CB C 15.93 0.25 1 755 . 122 ALA N N 125.79 0.10 1 756 . 123 PRO HA H 4.19 0.07 1 757 . 123 PRO C C 176.14 0.15 1 758 . 123 PRO CA C 63.05 0.25 1 759 . 123 PRO CB C 30.47 0.25 1 760 . 124 ILE H H 9.30 0.03 1 761 . 124 ILE HA H 4.27 0.07 1 762 . 124 ILE HB H 2.01 0.07 1 763 . 124 ILE C C 176.00 0.15 1 764 . 124 ILE CA C 58.59 0.25 1 765 . 124 ILE CB C 36.80 0.25 1 766 . 124 ILE N N 127.75 0.10 1 767 . 125 THR H H 8.14 0.03 1 768 . 125 THR HA H 5.53 0.07 1 769 . 125 THR C C 174.74 0.15 1 770 . 125 THR CA C 58.36 0.25 1 771 . 125 THR CB C 71.48 0.25 1 772 . 125 THR N N 115.41 0.10 1 773 . 126 GLY H H 7.97 0.03 1 774 . 126 GLY HA2 H 3.91 0.07 2 775 . 126 GLY HA3 H 4.18 0.07 2 776 . 126 GLY C C 170.80 0.15 1 777 . 126 GLY CA C 44.53 0.25 1 778 . 126 GLY N N 108.32 0.10 1 779 . 127 SER H H 8.41 0.03 1 780 . 127 SER HA H 5.71 0.07 1 781 . 127 SER HB2 H 3.46 0.07 2 782 . 127 SER C C 174.17 0.15 1 783 . 127 SER CA C 55.78 0.25 1 784 . 127 SER CB C 64.92 0.25 1 785 . 127 SER N N 113.24 0.10 1 786 . 128 SER H H 8.70 0.03 1 787 . 128 SER HA H 4.27 0.07 1 788 . 128 SER C C 171.92 0.15 1 789 . 128 SER CA C 57.58 0.25 1 790 . 128 SER CB C 59.76 0.25 1 791 . 128 SER N N 119.70 0.10 1 792 . 129 PRO HA H 4.73 0.07 1 793 . 129 PRO C C 175.86 0.15 1 794 . 129 PRO CA C 62.81 0.25 1 795 . 129 PRO CB C 30.93 0.25 1 796 . 130 LEU H H 8.22 0.03 1 797 . 130 LEU HA H 4.45 0.07 1 798 . 130 LEU HB2 H 1.56 0.07 4 799 . 130 LEU HD1 H 0.48 0.07 2 800 . 130 LEU C C 176.71 0.15 1 801 . 130 LEU CA C 56.01 0.25 1 802 . 130 LEU CB C 41.48 0.25 1 803 . 130 LEU N N 121.88 0.10 1 804 . 131 GLY H H 8.03 0.03 1 805 . 131 GLY HA2 H 4.72 0.07 2 806 . 131 GLY HA3 H 3.46 0.07 2 807 . 131 GLY C C 173.33 0.15 1 808 . 131 GLY CA C 44.30 0.25 1 809 . 131 GLY N N 110.25 0.10 1 810 . 132 ALA H H 7.84 0.03 1 811 . 132 ALA HA H 4.09 0.07 1 812 . 132 ALA HB H 1.47 0.07 1 813 . 132 ALA C C 177.13 0.15 1 814 . 132 ALA CA C 50.86 0.25 1 815 . 132 ALA CB C 20.39 0.25 1 816 . 132 ALA N N 124.91 0.10 1 817 . 133 THR H H 8.90 0.03 1 818 . 133 THR HA H 4.63 0.07 1 819 . 133 THR C C 175.01 0.15 1 820 . 133 THR CA C 61.64 0.25 1 821 . 133 THR CB C 67.58 0.25 1 822 . 133 THR N N 120.40 0.10 1 823 . 134 GLN H H 9.19 0.03 1 824 . 134 GLN HA H 4.09 0.07 1 825 . 134 GLN HG2 H 2.03 0.07 4 826 . 134 GLN HE21 H 6.69 0.03 2 827 . 134 GLN HE22 H 7.59 0.03 2 828 . 134 GLN C C 177.85 0.15 1 829 . 134 GLN CA C 53.44 0.25 1 830 . 134 GLN CB C 31.87 0.25 1 831 . 134 GLN CD C 180.78 0.15 1 832 . 134 GLN N N 128.90 0.10 1 833 . 134 GLN NE2 N 112.33 0.10 1 834 . 135 LEU H H 8.72 0.03 1 835 . 135 LEU HA H 4.28 0.07 1 836 . 135 LEU C C 174.74 0.15 1 837 . 135 LEU CA C 54.74 0.25 1 838 . 135 LEU CB C 41.37 0.25 1 839 . 135 LEU N N 122.02 0.10 1 840 . 136 ASP H H 8.84 0.03 1 841 . 136 ASP HA H 4.72 0.07 1 842 . 136 ASP C C 174.03 0.15 1 843 . 136 ASP CA C 52.26 0.25 1 844 . 136 ASP CB C 39.84 0.25 1 845 . 136 ASP N N 122.15 0.10 1 846 . 137 THR H H 8.56 0.03 1 847 . 137 THR HA H 4.45 0.07 1 848 . 137 THR HB H 4.71 0.07 1 849 . 137 THR C C 176.71 0.15 1 850 . 137 THR CA C 62.11 0.25 1 851 . 137 THR N N 116.76 0.10 1 852 . 138 ASP H H 8.53 0.03 1 853 . 138 ASP HA H 4.72 0.07 1 854 . 138 ASP C C 177.55 0.15 1 855 . 138 ASP CA C 51.33 0.25 1 856 . 138 ASP CB C 40.54 0.25 1 857 . 138 ASP N N 122.07 0.10 1 858 . 139 GLY H H 8.62 0.03 1 859 . 139 GLY HA2 H 4.09 0.07 2 860 . 139 GLY HA3 H 3.45 0.07 2 861 . 139 GLY C C 172.77 0.15 1 862 . 139 GLY CA C 44.30 0.25 1 863 . 139 GLY N N 107.57 0.10 1 864 . 140 ALA H H 7.81 0.03 1 865 . 140 ALA HA H 5.08 0.07 1 866 . 140 ALA C C 172.21 0.15 1 867 . 140 ALA CA C 52.03 0.25 1 868 . 140 ALA CB C 19.92 0.25 1 869 . 140 ALA N N 124.62 0.10 1 870 . 141 LEU H H 9.16 0.03 1 871 . 141 LEU HA H 5.00 0.07 1 872 . 141 LEU C C 172.63 0.15 1 873 . 141 LEU CA C 53.90 0.25 1 874 . 141 LEU CB C 44.76 0.25 1 875 . 141 LEU N N 115.29 0.10 1 876 . 142 TRP H H 9.63 0.03 1 877 . 142 TRP HA H 5.89 0.07 1 878 . 142 TRP HD1 H 7.31 0.07 1 879 . 142 TRP HE1 H 10.28 0.03 1 880 . 142 TRP C C 176.85 0.15 1 881 . 142 TRP CA C 55.31 0.25 1 882 . 142 TRP CB C 30.94 0.25 1 883 . 142 TRP N N 127.49 0.10 1 884 . 142 TRP NE1 N 130.11 0.10 1 885 . 143 LEU H H 9.87 0.03 1 886 . 143 LEU HA H 5.53 0.07 1 887 . 143 LEU C C 177.55 0.15 1 888 . 143 LEU CA C 57.50 0.25 1 889 . 143 LEU CB C 44.76 0.25 1 890 . 143 LEU N N 122.78 0.10 1 891 . 144 GLY H H 8.62 0.03 1 892 . 144 GLY HA2 H 3.28 0.07 2 893 . 144 GLY C C 172.21 0.15 1 894 . 144 GLY N N 109.65 0.10 1 895 . 145 GLY H H 7.38 0.03 1 896 . 145 GLY HA2 H 3.84 0.07 2 897 . 145 GLY C C 169.95 0.15 1 898 . 145 GLY CA C 45.70 0.25 1 899 . 145 GLY N N 106.30 0.10 1 900 . 146 MET H H 7.13 0.03 1 901 . 146 MET HA H 3.64 0.07 1 902 . 146 MET HB2 H 0.75 0.07 4 903 . 146 MET C C 174.87 0.15 1 904 . 146 MET CA C 52.26 0.25 1 905 . 146 MET CB C 33.51 0.25 1 906 . 146 MET N N 114.02 0.10 1 907 . 147 GLU H H 7.36 0.03 1 908 . 147 GLU HA H 3.91 0.07 1 909 . 147 GLU HB2 H 1.47 0.07 2 910 . 147 GLU C C 175.72 0.15 1 911 . 147 GLU CA C 56.95 0.25 1 912 . 147 GLU CB C 30.94 0.25 1 913 . 147 GLU N N 123.46 0.10 1 914 . 148 ARG H H 7.56 0.03 1 915 . 148 ARG HA H 4.18 0.07 1 916 . 148 ARG HB2 H 1.56 0.07 2 917 . 148 ARG C C 175.44 0.15 1 918 . 148 ARG CA C 54.61 0.25 1 919 . 148 ARG CB C 30.70 0.25 1 920 . 148 ARG N N 119.39 0.10 1 921 . 149 LEU H H 7.30 0.03 1 922 . 149 LEU HA H 4.54 0.07 1 923 . 149 LEU HD1 H 1.20 0.07 4 924 . 149 LEU C C 174.03 0.15 1 925 . 149 LEU CA C 51.56 0.25 1 926 . 149 LEU CB C 41.01 0.25 1 927 . 149 LEU N N 122.65 0.10 1 928 . 150 SER H H 7.48 0.03 1 929 . 150 SER HA H 4.72 0.07 1 930 . 150 SER HB2 H 3.83 0.07 2 931 . 150 SER HB3 H 3.91 0.07 2 932 . 150 SER C C 175.44 0.15 1 933 . 150 SER CA C 56.01 0.25 1 934 . 150 SER CB C 65.62 0.25 1 935 . 150 SER N N 113.50 0.10 1 936 . 151 VAL H H 8.91 0.03 1 937 . 151 VAL C C 174.17 0.15 1 938 . 151 VAL CA C 65.62 0.25 1 939 . 151 VAL N N 124.25 0.10 1 940 . 152 ALA H H 8.66 0.03 1 941 . 152 ALA HA H 4.10 0.07 1 942 . 152 ALA HB H 1.21 0.07 1 943 . 152 ALA C C 175.72 0.15 1 944 . 152 ALA CB C 17.34 0.25 1 945 . 152 ALA N N 126.99 0.10 1 946 . 153 HIS H H 7.43 0.03 1 947 . 153 HIS HA H 4.73 0.07 1 948 . 153 HIS HB2 H 3.64 0.07 2 949 . 153 HIS C C 176.28 0.15 1 950 . 153 HIS CA C 57.66 0.25 1 951 . 153 HIS CB C 28.36 0.25 1 952 . 153 HIS N N 123.34 0.10 1 953 . 154 LYS H H 7.46 0.03 1 954 . 154 LYS HA H 4.00 0.07 1 955 . 154 LYS HB2 H 1.48 0.07 2 956 . 154 LYS C C 174.17 0.15 1 957 . 154 LYS CA C 54.84 0.25 1 958 . 154 LYS CB C 29.53 0.25 1 959 . 154 LYS N N 116.86 0.10 1 960 . 155 LEU H H 7.80 0.03 1 961 . 155 LEU HA H 4.09 0.07 1 962 . 155 LEU C C 177.69 0.15 1 963 . 155 LEU CA C 53.44 0.25 1 964 . 155 LEU CB C 41.95 0.25 1 965 . 155 LEU N N 124.03 0.10 1 966 . 156 PRO HA H 4.46 0.07 1 967 . 156 PRO C C 177.97 0.15 1 968 . 156 PRO CA C 62.34 0.25 1 969 . 156 PRO CB C 31.40 0.25 1 970 . 157 LYS H H 8.96 0.03 1 971 . 157 LYS HA H 4.72 0.07 1 972 . 157 LYS HB2 H 1.38 0.07 2 973 . 157 LYS C C 178.67 0.15 1 974 . 157 LYS CA C 58.36 0.25 1 975 . 157 LYS CB C 30.47 0.25 1 976 . 157 LYS N N 127.26 0.10 1 977 . 158 ALA H H 8.80 0.03 1 978 . 158 ALA HA H 4.72 0.07 1 979 . 158 ALA HB H 1.62 0.07 1 980 . 158 ALA C C 178.25 0.15 1 981 . 158 ALA CA C 54.84 0.25 1 982 . 158 ALA CB C 21.09 0.25 1 983 . 158 ALA N N 123.70 0.10 1 984 . 159 TYR H H 7.85 0.03 1 985 . 159 TYR HA H 3.82 0.07 1 986 . 159 TYR HB2 H 2.66 0.07 2 987 . 159 TYR HB3 H 2.80 0.07 2 988 . 159 TYR C C 174.88 0.15 1 989 . 159 TYR CA C 60.47 0.25 1 990 . 159 TYR CB C 36.33 0.25 1 991 . 159 TYR N N 111.43 0.10 1 992 . 160 SER H H 7.54 0.03 1 993 . 160 SER HA H 4.45 0.07 1 994 . 160 SER HB2 H 3.82 0.07 2 995 . 160 SER C C 173.19 0.15 1 996 . 160 SER CA C 56.72 0.25 1 997 . 160 SER CB C 62.34 0.25 1 998 . 160 SER N N 111.21 0.10 1 999 . 161 THR H H 7.35 0.03 1 1000 . 161 THR HA H 4.36 0.07 1 1001 . 161 THR HB H 4.00 0.07 1 1002 . 161 THR HG2 H 1.17 0.07 1 1003 . 161 THR C C 173.19 0.15 1 1004 . 161 THR CA C 60.70 0.25 1 1005 . 161 THR CB C 69.61 0.25 1 1006 . 161 THR N N 119.39 0.10 1 1007 . 162 GLY H H 8.87 0.03 1 1008 . 162 GLY HA2 H 4.27 0.07 2 1009 . 162 GLY C C 174.88 0.15 1 1010 . 162 GLY CA C 44.76 0.25 1 1011 . 162 GLY N N 116.50 0.10 1 1012 . 163 PHE H H 8.80 0.03 1 1013 . 163 PHE HA H 4.09 0.07 1 1014 . 163 PHE HB2 H 2.48 0.07 2 1015 . 163 PHE HB3 H 3.20 0.07 2 1016 . 163 PHE C C 173.75 0.15 1 1017 . 163 PHE CA C 57.89 0.25 1 1018 . 163 PHE CB C 39.16 0.25 1 1019 . 163 PHE N N 127.35 0.10 1 1020 . 164 ILE H H 6.20 0.03 1 1021 . 164 ILE HA H 4.09 0.07 1 1022 . 164 ILE HB H 1.20 0.07 4 1023 . 164 ILE HG12 H 2.11 0.07 4 1024 . 164 ILE C C 175.02 0.15 1 1025 . 164 ILE CA C 59.30 0.25 1 1026 . 164 ILE CB C 37.97 0.25 1 1027 . 164 ILE N N 126.16 0.10 1 1028 . 165 GLY H H 8.08 0.03 1 1029 . 165 GLY HA2 H 3.82 0.07 2 1030 . 165 GLY C C 171.50 0.15 1 1031 . 165 GLY CA C 44.06 0.25 1 1032 . 165 GLY N N 115.63 0.10 1 1033 . 166 CYS H H 9.30 0.03 1 1034 . 166 CYS HA H 6.43 0.07 1 1035 . 166 CYS HB2 H 3.10 0.07 2 1036 . 166 CYS C C 172.63 0.15 1 1037 . 166 CYS CA C 53.44 0.25 1 1038 . 166 CYS CB C 47.34 0.25 1 1039 . 166 CYS N N 118.54 0.10 1 1040 . 167 ILE H H 9.10 0.03 1 1041 . 167 ILE HA H 5.35 0.07 1 1042 . 167 ILE C C 173.33 0.15 1 1043 . 167 ILE CA C 60.94 0.25 1 1044 . 167 ILE CB C 41.01 0.25 1 1045 . 167 ILE N N 120.87 0.10 1 1046 . 168 ARG H H 8.86 0.03 1 1047 . 168 ARG HA H 4.90 0.07 1 1048 . 168 ARG C C 172.49 0.15 1 1049 . 168 ARG CA C 53.90 0.25 1 1050 . 168 ARG CB C 33.04 0.25 1 1051 . 168 ARG N N 121.84 0.10 1 1052 . 169 ASP H H 8.68 0.03 1 1053 . 169 ASP HA H 4.18 0.07 1 1054 . 169 ASP C C 173.89 0.15 1 1055 . 169 ASP CA C 54.37 0.25 1 1056 . 169 ASP CB C 38.44 0.25 1 1057 . 169 ASP N N 118.37 0.10 1 1058 . 170 VAL H H 8.86 0.03 1 1059 . 170 VAL HA H 4.70 0.07 1 1060 . 170 VAL C C 175.72 0.15 1 1061 . 170 VAL CA C 61.41 0.25 1 1062 . 170 VAL CB C 30.00 0.25 1 1063 . 170 VAL N N 120.35 0.10 1 1064 . 171 ILE H H 9.47 0.03 1 1065 . 171 ILE HA H 4.53 0.07 1 1066 . 171 ILE HB H 1.65 0.07 1 1067 . 171 ILE C C 175.86 0.15 1 1068 . 171 ILE CA C 59.30 0.25 1 1069 . 171 ILE CB C 38.44 0.25 1 1070 . 171 ILE N N 130.50 0.10 1 1071 . 172 VAL H H 8.85 0.03 1 1072 . 172 VAL HA H 4.63 0.07 1 1073 . 172 VAL C C 176.00 0.15 1 1074 . 172 VAL CA C 60.00 0.25 1 1075 . 172 VAL CB C 32.34 0.25 1 1076 . 172 VAL N N 127.90 0.10 1 1077 . 173 ASP H H 9.69 0.03 1 1078 . 173 ASP HA H 4.27 0.07 1 1079 . 173 ASP C C 175.02 0.15 1 1080 . 173 ASP CA C 56.02 0.25 1 1081 . 173 ASP CB C 38.44 0.25 1 1082 . 173 ASP N N 129.95 0.10 1 1083 . 174 ARG H H 8.35 0.03 1 1084 . 174 ARG HA H 3.37 0.07 4 1085 . 174 ARG C C 174.88 0.15 1 1086 . 174 ARG CA C 57.42 0.25 1 1087 . 174 ARG CB C 26.48 0.25 1 1088 . 174 ARG N N 107.79 0.10 1 1089 . 175 GLN H H 7.95 0.03 1 1090 . 175 GLN HA H 4.54 0.07 1 1091 . 175 GLN HB2 H 2.01 0.07 2 1092 . 175 GLN HG2 H 2.50 0.07 2 1093 . 175 GLN HE21 H 7.99 0.03 2 1094 . 175 GLN HE22 H 6.76 0.03 2 1095 . 175 GLN C C 174.17 0.15 1 1096 . 175 GLN CA C 53.44 0.25 1 1097 . 175 GLN CB C 30.00 0.25 1 1098 . 175 GLN CD C 180.64 0.15 1 1099 . 175 GLN N N 121.38 0.10 1 1100 . 175 GLN NE2 N 112.46 0.10 1 1101 . 176 GLU C C 173.05 0.15 1 1102 . 176 GLU CB C 32.34 0.25 1 1103 . 177 LEU H H 9.05 0.03 1 1104 . 177 LEU HA H 5.17 0.07 1 1105 . 177 LEU C C 173.89 0.15 1 1106 . 177 LEU CA C 53.67 0.25 1 1107 . 177 LEU CB C 40.78 0.25 1 1108 . 177 LEU N N 122.50 0.10 1 1109 . 178 HIS H H 8.68 0.03 1 1110 . 178 HIS HA H 5.44 0.07 1 1111 . 178 HIS C C 175.16 0.15 1 1112 . 178 HIS CA C 54.14 0.25 1 1113 . 178 HIS CB C 26.24 0.25 1 1114 . 178 HIS N N 118.16 0.10 1 1115 . 179 LEU H H 8.56 0.03 1 1116 . 179 LEU HA H 4.00 0.07 1 1117 . 179 LEU C C 178.25 0.15 1 1118 . 179 LEU CA C 57.66 0.25 1 1119 . 179 LEU CB C 40.78 0.25 1 1120 . 179 LEU N N 125.23 0.10 1 1121 . 180 VAL H H 8.27 0.03 1 1122 . 180 VAL HA H 3.91 0.07 1 1123 . 180 VAL HB H 2.11 0.07 1 1124 . 180 VAL C C 179.10 0.15 1 1125 . 180 VAL CA C 64.45 0.25 1 1126 . 180 VAL CB C 30.94 0.25 1 1127 . 180 VAL N N 114.96 0.10 1 1128 . 181 GLU H H 8.80 0.03 1 1129 . 181 GLU HA H 4.00 0.07 1 1130 . 181 GLU C C 178.39 0.15 1 1131 . 181 GLU CA C 59.76 0.25 1 1132 . 181 GLU CB C 28.36 0.25 1 1133 . 181 GLU N N 118.73 0.10 1 1134 . 182 ASP H H 8.58 0.03 1 1135 . 182 ASP HA H 4.99 0.07 1 1136 . 182 ASP HB2 H 3.09 0.07 2 1137 . 182 ASP C C 175.72 0.15 1 1138 . 182 ASP CA C 54.84 0.25 1 1139 . 182 ASP CB C 39.84 0.25 1 1140 . 182 ASP N N 115.01 0.10 1 1141 . 183 ALA H H 6.94 0.03 1 1142 . 183 ALA HA H 3.99 0.07 1 1143 . 183 ALA HB H 1.29 0.07 1 1144 . 183 ALA C C 180.08 0.15 1 1145 . 183 ALA CA C 52.03 0.25 1 1146 . 183 ALA CB C 17.11 0.25 1 1147 . 183 ALA N N 122.92 0.10 1 1148 . 184 LEU H H 8.98 0.03 1 1149 . 184 LEU HA H 4.27 0.07 1 1150 . 184 LEU C C 178.11 0.15 1 1151 . 184 LEU CA C 54.14 0.25 1 1152 . 184 LEU CB C 41.72 0.25 1 1153 . 184 LEU N N 120.61 0.10 1 1154 . 185 ASN H H 8.53 0.03 1 1155 . 185 ASN HA H 4.72 0.07 1 1156 . 185 ASN HB2 H 2.60 0.07 2 1157 . 185 ASN C C 173.89 0.15 1 1158 . 185 ASN CA C 52.50 0.25 1 1159 . 185 ASN CB C 41.72 0.25 1 1160 . 185 ASN N N 115.13 0.10 1 1161 . 186 ASN H H 8.60 0.03 1 1162 . 186 ASN HA H 4.45 0.07 1 1163 . 186 ASN C C 174.74 0.15 1 1164 . 186 ASN CA C 52.97 0.25 1 1165 . 186 ASN CB C 37.50 0.25 1 1166 . 186 ASN N N 116.71 0.10 1 1167 . 187 PRO HA H 4.51 0.07 1 1168 . 187 PRO C C 176.56 0.15 1 1169 . 187 PRO CA C 62.34 0.25 1 1170 . 187 PRO CB C 31.17 0.25 1 1171 . 188 THR H H 8.48 0.03 1 1172 . 188 THR HA H 4.09 0.07 1 1173 . 188 THR HB H 4.02 0.07 1 1174 . 188 THR C C 173.75 0.15 1 1175 . 188 THR CA C 62.34 0.25 1 1176 . 188 THR CB C 67.97 0.25 1 1177 . 188 THR N N 118.33 0.10 1 1178 . 189 ILE H H 8.30 0.03 1 1179 . 189 ILE HA H 4.00 0.07 1 1180 . 189 ILE HB H 1.83 0.07 1 1181 . 189 ILE C C 175.02 0.15 1 1182 . 189 ILE CA C 58.36 0.25 1 1183 . 189 ILE CB C 36.09 0.25 1 1184 . 189 ILE N N 128.05 0.10 1 1185 . 190 LEU H H 9.16 0.03 1 1186 . 190 LEU HA H 4.54 0.07 1 1187 . 190 LEU C C 176.14 0.15 1 1188 . 190 LEU CA C 52.50 0.25 1 1189 . 190 LEU CB C 42.66 0.25 1 1190 . 190 LEU N N 131.41 0.10 1 1191 . 191 HIS H H 8.68 0.03 1 1192 . 191 HIS HA H 4.81 0.07 1 1193 . 191 HIS HB2 H 2.87 0.07 2 1194 . 191 HIS C C 175.16 0.15 1 1195 . 191 HIS CA C 55.53 0.25 1 1196 . 191 HIS CB C 29.30 0.25 1 1197 . 191 HIS N N 120.01 0.10 1 1198 . 192 CYS H H 8.28 0.03 1 1199 . 192 CYS HA H 4.72 0.07 1 1200 . 192 CYS C C 174.03 0.15 1 1201 . 192 CYS CA C 56.48 0.00 1 1202 . 192 CYS CB C 43.36 0.25 1 1203 . 192 CYS N N 122.03 0.10 1 1204 . 193 SER H H 8.58 0.03 1 1205 . 193 SER HA H 4.00 0.07 1 1206 . 193 SER HB2 H 3.91 0.07 2 1207 . 193 SER C C 170.24 0.15 1 1208 . 193 SER CA C 57.89 0.25 1 1209 . 193 SER CB C 62.81 0.25 1 1210 . 193 SER N N 121.18 0.10 1 1211 . 194 ALA H H 8.28 0.03 1 1212 . 194 ALA HA H 4.27 0.07 1 1213 . 194 ALA HB H 1.39 0.07 1 1214 . 194 ALA C C 176.55 0.15 1 1215 . 194 ALA CA C 51.80 0.25 1 1216 . 194 ALA CB C 18.28 0.25 1 1217 . 194 ALA N N 127.45 0.10 1 1218 . 195 LYS H H 7.78 0.03 1 1219 . 195 LYS HA H 4.09 0.07 1 1220 . 195 LYS HB2 H 1.65 0.07 4 1221 . 195 LYS HB3 H 1.29 0.07 4 1222 . 195 LYS C C 181.84 0.15 1 1223 . 195 LYS CA C 56.95 0.25 1 1224 . 195 LYS CB C 32.34 0.25 1 1225 . 195 LYS N N 125.71 0.10 1 stop_ save_