data_5403 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Backbone resonance assignments of the 91 kDa oligomeric TRAP protein from Bacillus staerothermophilus in complex with L-tryptophan ; _BMRB_accession_number 5403 _BMRB_flat_file_name bmr5403.str _Entry_type original _Submission_date 2002-06-26 _Accession_date 2002-06-26 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 McElroy Craig A. . 2 Manfredo Amanda . . 3 Wendt Alice . . 4 Gollnick Paul . . 5 Foster Mark P. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 2 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 57 "13C chemical shifts" 148 "15N chemical shifts" 57 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2020-06-09 update author 'update assignments' 2003-04-10 original author 'original release' stop_ _Original_release_date 2002-06-26 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; TROSY-NMR Studies of the 91 kDa TRAP Protein reveal Allosteric Control of a Gene Regulatory Protein by Ligand-altered Flexibility ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 22269622 _PubMed_ID 12381302 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 McElroy Craig A. . 2 Manfredo Amanda . . 3 Wendt Alice . . 4 Gollnick Paul . . 5 Foster Mark P. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_volume 323 _Journal_issue 3 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 463 _Page_last 473 _Year 2002 _Details . loop_ _Keyword 'Bacillus stearothermophilus' 'NMR assignments' TROSY 'trp RNA-binding attenuation protein' stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Antson, A. A., Brzozowski, A. M., Dodson, E. J., Dauter, Z., Wilson, K. S., Kurecki, T., Otridge, J. & Gollnick, P. (1994). J. Mol. Biol. 244, 1-5. ; _Citation_title ; 11-fold symmetry of the trp RNA-binding attenuation protein (TRAP) from Bacillus subtilis determined by X-ray analysis. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7525975 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Antson A.A. A. . 2 Brzozowski A.M. M. . 3 Dodson E.J. J. . 4 Dauter Z. . . 5 Wilson K.S. S. . 6 Kurecki T. . . 7 Otridge J. . . 8 Gollnick P. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 244 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1 _Page_last 5 _Year 1994 _Details ; The trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis has been crystallized and examined by crystallography using X-ray synchrotron radiation diffraction data. Crystals of TRAP complexed with L-tryptophan belong to space group C2 with a = 156.8 A, b = 114.05 A, c = 105.9 A, beta = 118.2 degrees. Crystals of a potential heavy-atom derivative of TRAP complexed with 5-bromo-L-tryptophan grow in the same space group with similar cell dimensions. X-ray data for the native crystals and for the derivative have been collected to 2.9 A and 2.2 A resolution, respectively. Peaks in the self-rotation function and in the Patterson synthesis could only be explained by two 11-subunit oligomers (each formed by an 11-fold axis of symmetry) in the asymmetric unit lying with the 11-fold rotation axes parallel to each other. The consequence is that the TRAP molecule has 11-fold symmetry and contains 11 subunits. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Antson, A. A., Dodson, E. J., Dodson, G., Greaves, R. B., Chen, X. & Gollnick, P. (1999). Nature 401, 235-42. ; _Citation_title ; Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10499579 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Antson A.A. A. . 2 Dodson E.J. J. . 3 Dodson G. . . 4 Greaves R.B. B. . 5 Chen X. . . 6 Gollnick P. . . stop_ _Journal_abbreviation Nature _Journal_name_full Nature _Journal_volume 401 _Journal_issue 6750 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 235 _Page_last 242 _Year 1999 _Details ; The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic genes of several bacilli by binding single-stranded RNA. The binding sequence is composed of eleven triplet repeats, predominantly GAG, separated by two or three non-conserved nucleotides. Here we present the crystal structure of a complex of TRAP and a 53-base single-stranded RNA containing eleven GAG triplets, revealing that each triplet is accommodated in a binding pocket formed by beta-strands. In the complex, the RNA has an extended structure without any base-pairing and binds to the protein mostly by specific protein-base interactions. Eleven binding pockets on the circular TRAP 11-mer form a belt with a diameter of about 80 A. This simple but elegant mechanism of arresting the RNA segment by encircling it around a protein disk is applicable to both transcription, when TRAP binds the nascent RNA, and to translation, when TRAP binds the same sequence within a non-coding leader region of the messenger RNA. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Antson, A. A., Otridge, J., Brzozowski, A. M., Dodson, E. J., Dodson, G. G., Wilson, K. S., Smith, T. M., Yang, M., Kurecki, T. & Gollnick, P. (1995). Nature 374, 693-700. ; _Citation_title ; The structure of trp RNA-binding attenuation protein. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7715723 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Antson A.A. A. . 2 Otridge J. . . 3 Brzozowski A.M. M. . 4 Dodson E.J. J. . 5 Dodson G.G. G. . 6 Wilson K.S. S. . 7 Smith T.M. M. . 8 Yang M. . . 9 Kurecki T. . . 10 Gollnick P. . . stop_ _Journal_abbreviation Nature _Journal_name_full Nature _Journal_volume 374 _Journal_issue 6524 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 693 _Page_last 700 _Year 1995 _Details ; The crystal structure of the trp RNA-binding attenuation protein of Bacclius subtilis solved at 1.8 A resolution reveals a novel structural arrangement in which the eleven subunits are stabilized through eleven intersubunit beta-sheets to form a beta-wheel with a large central hole. The nature of the binding of L-tryptophan in clefts between adjacent beta-sheets in the beta-wheel suggests that this binding induces conformational changes in the flexible residues 25-33 and 49-52. It is argued that upon binding, the messenger RNA target forms a matching circle in which eleven U/GAG repeats are bound to the surface of the protein ondecamer modified by the binding of L-tryptophan. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Babitzke, P. (1997). Mol. Microbiol. 26, 1-9. ; _Citation_title ; Regulation of tryptophan biosynthesis: Trp-ing the TRAP or how Bacillus subtilis reinvented the wheel. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9383185 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Babitzke P. . . stop_ _Journal_abbreviation 'Mol. Microbiol.' _Journal_name_full 'Molecular microbiology' _Journal_volume 26 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1 _Page_last 9 _Year 1997 _Details ; The Bacillus subtilis tryptophan biosynthetic genes are regulated by TRAP. Radiographic crystallography indicates that the TRAP complex contains 11 identical subunits arranged in a doughnut-like structure termed the beta-wheel. The trpEDCFBA operon is regulated by an attenuation mechanism in which tryptophan-activated TRAP binds to 11 (G/U)AG repeats in the trp leader transcript. TRAP binding blocks formation of an anti-terminator structure, thereby promoting the formation of an overlapping terminator, resulting in transcription termination preceding the structural genes. When TRAP is not activated, it is unable to bind to the transcript, which allows anti-terminator formation and, hence, transcription of the operon. TRAP is also responsible for regulating translation of trpEand trpG. TRAP binding to trp operon readthrough transcripts promotes refolding of the RNA such that the trpE Shine-Dalgarno sequence is sequestered in a hairpin, thus inhibiting TrpE synthesis. In the case of trpG, TRAP binds to nine repeats that overlap the ribosome-binding site, thereby blocking translation. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; Cavanagh, J. (1996). Protein NMR spectroscopy : principles and practice, Academic Press, San Diego. ; _Citation_title . _Citation_status published _Citation_type book _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 . . . . stop_ _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_6 _Saveframe_category citation _Citation_full ; Chen, X., Antson, A. A., Yang, M., Li, P., Baumann, C., Dodson, E. J., Dodson, G. G. & Gollnick, P. (1999). J. Mol. Biol. 289, 1003-16. ; _Citation_title ; Regulatory features of the trp operon and the crystal structure of the trp RNA-binding attenuation protein from Bacillus stearothermophilus. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10369778 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Chen X.P. . . 2 Antson A.A. A. . 3 Yang M. . . 4 Li P. . . 5 Baumann C. . . 6 Dodson E.J. J. . 7 Dodson G.G. G. . 8 Gollnick P. . . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 289 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1003 _Page_last 1016 _Year 1999 _Details ; Characterization of both the cis and trans -acting regulatory elements indicates that the Bacillus stearothermophilustrp operon is regulated by an attenuation mechanism similar to that which controls the trp operon in Bacillus subtilis. Secondary structure predictions indicate that the leader region of the trp mRNA is capable of folding into terminator and anti- terminator RNA structures. B. stearothermophilus also encodes an RNA-binding protein with 77% sequence identity with the RNA-binding protein (TRAP) that regulates attenuation in B. subtilis. The X-ray structure of this protein has been determined in complex with L-tryptophan at 2.5 A resolution. Like the B. subtilis protein, B. stearothermophilus TRAP has 11 subunits arranged in a ring-like structure. The central cavities in these two structures have different sizes and opposite charge distributions, and packing within the B. stearothermophilus TRAP crystal form does not generate the head-to-head dimers seen in the B. subtilis protein, suggesting that neither of these properties is functionally important. However, the mode of L-tryptophan binding and the proposed RNA binding surfaces are similar, indicating that both proteins are activated by l -tryptophan and bind RNA in essentially the same way. As expected, the TRAP:RNA complex from B. stearothermophilus is significantly more thermostable than that from B. subtilis, with optimal binding occurring at 70 degrees C. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; Hoffman, R. J. & Gollnick, P. (1995). J. Bacteriol. 177, 839-42. ; _Citation_title ; The mtrB gene of Bacillus pumilus encodes a protein with sequence and functional homology to the trp RNA-binding attenuation protein (TRAP) of Bacillus subtilis. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7836324 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Hoffman R.J. J. . 2 Gollnick P. . . stop_ _Journal_abbreviation 'J. Bacteriol.' _Journal_name_full 'Journal of bacteriology' _Journal_volume 177 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 839 _Page_last 842 _Year 1995 _Details ; The mtrB gene from Bacillus pumilus encodes a 76-amino-acid polypeptide with 77% identity to the trp RNA-binding attenuation protein (TRAP) from Bacillus subtilis. B. pumilus TRAP binds trp leader RNA from either B. subtilis or B. pumilus in a tryptophan-dependent manner. Altering threonine 52 to alanine eliminated RNA-binding activity of B. pumilus TRAP. ; save_ save_ref_8 _Saveframe_category citation _Citation_full ; Kuroda, M. I., Henner, D. & Yanofsky, C. (1988). J. Bacteriol. 170, 3080-8. ; _Citation_title ; cis-acting sites in the transcript of the Bacillus subtilis trp operon regulate expression of the operon. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 3133360 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Kuroda M.I. I. . 2 Henner D. . . 3 Yanofsky C. . . stop_ _Journal_abbreviation 'J. Bacteriol.' _Journal_name_full 'Journal of bacteriology' _Journal_volume 170 _Journal_issue 7 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 3080 _Page_last 3088 _Year 1988 _Details ; Transcription of the trp operon of Bacillus subtilis is regulated by attenuation. A trpE'-'lacZ gene fusion preceded by the wild-type trp promoter-leader region was used to analyze regulation. Overproduction of the trp leader transcript in trans from a multicopy plasmid caused constitutive expression of the chromosomal trpE'-'lacZ fusion, presumably by titrating a negative regulatory factor encoded by the mtr locus. Subsegments of the trp leader region cloned onto the multicopy plasmid were examined for their abilities to elevate beta-galactosidase activity. An RNA segment spanning the portion of the leader transcript that forms the promoter-proximal strand of the proposed antiterminator structure was most active in this trans test. The data suggest that the mtr gene product, when activated by tryptophan, binds to this RNA segment and prevents formation of the antiterminator. In this manner, the trans-acting factor promotes formation of the RNA structure that causes transcription termination. Secondary-structure predictions for the leader segment of the trp operon transcript suggest that if the mtr factor bound this RNA segment in a nonterminated transcript, the ribosome-binding site for the first structural gene, trpE, could be sequestered in a stable RNA structure. We tested this possibility by comparing transcriptional and translational fusions containing the initial segments of the trp operon. Our findings suggest that the mtr product causes both transcription attenuation and inhibition of translation of trpE mRNA. Inhibition of translation initiation would reduce ribosome density on trpE mRNA, perhaps making it more labile. Consistent with this interpretation, the addition of tryptophan to mtr+ cultures increased the rate of trpE'-'lacZ mRNA decay. ; save_ save_ref_9 _Saveframe_category citation _Citation_full ; Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wuthrich, K. (1998). Proc. Natl. Acad. Sci. U. S. A. 95, 13585-90. ; _Citation_title ; TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9811843 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Salzmann M. . . 2 Pervushin K. . . 3 Wider G. . . 4 Senn H. . . 5 Wuthrich K. . . stop_ _Journal_abbreviation 'Proc. Natl. Acad. Sci. U.S.A.' _Journal_name_full 'Proceedings of the National Academy of Sciences of the United States of America' _Journal_volume 95 _Journal_issue 23 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 13585 _Page_last 13590 _Year 1998 _Details ; The NMR assignment of 13C, 15N-labeled proteins with the use of triple resonance experiments is limited to molecular weights below approximately 25,000 Daltons, mainly because of low sensitivity due to rapid transverse nuclear spin relaxation during the evolution and recording periods. For experiments that exclusively correlate the amide proton (1HN), the amide nitrogen (15N), and 13C atoms, this size limit has been previously extended by additional labeling with deuterium (2H). The present paper shows that the implementation of transverse relaxation-optimized spectroscopy ([15N,1H]-TROSY) into triple resonance experiments results in several-fold improved sensitivity for 2H/13C/15N-labeled proteins and approximately twofold sensitivity gain for 13C/15N-labeled proteins. Pulse schemes and spectra recorded with deuterated and protonated proteins are presented for the [15N, 1H]-TROSY-HNCA and [15N, 1H]-TROSY-HNCO experiments. A theoretical analysis of the HNCA experiment shows that the primary TROSY effect is on the transverse relaxation of 15N, which is only little affected by deuteration, and predicts sensitivity enhancements that are in close agreement with the experimental data. ; save_ save_ref_10 _Saveframe_category citation _Citation_full ; Salzmann, M., Wider, G., Pervushin, K. & Wuthrich, K. (1999). J. Biomol. NMR 15, 181-4. ; _Citation_title ; Improved sensitivity and coherence selection for [15N,1H]-TROSY elements in triple resonance experiments. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10605091 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Salzmann M. . . 2 Wider G. . . 3 Pervushin K. . . 4 Wuthrich K. . . stop_ _Journal_abbreviation 'J. Biomol. NMR' _Journal_name_full 'Journal of biomolecular NMR' _Journal_volume 15 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 181 _Page_last 184 _Year 1999 _Details ; In experiments with proteins of molecular weights around 100 kDa the implementation of [15N,1H]-TROSY-elements in [15N]-constant-time triple resonance experiments yields sensitivity enhancements of one to two orders of magnitude. An additional gain of 10 to 20% may be obtained with the use of 'sensitivity enhancement elements'. This paper describes a novel sensitivity enhancement scheme which is based on concatenation of the 13C alpha-->15N magnetization transfer with the ST2-PT element, and which enables proper TROSY selection of the 15N multiplet components. ; save_ save_ref_11 _Saveframe_category citation _Citation_full ; Hopcroft NH, Wendt AL, Gollnick P, Antson AA. Specificity of TRAP-RNA interactions: crystal structures of two complexes with different RNA sequences. Acta Crystallogr D Biol Crystallogr. 2002 Apr;58(Pt 4):615-21. ; _Citation_title ; Specificity of TRAP-RNA interactions: crystal structures of two complexes with different RNA sequences. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11914485 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Hopcroft 'Nicholas H.' H. . 2 Wendt 'Alice L.' L. . 3 Gollnick Paul . . 4 Antson 'Alfred A.' A. . stop_ _Journal_abbreviation 'Acta Crystallogr. D Biol. Crystallogr.' _Journal_name_full 'Acta crystallographica. Section D, Biological crystallography' _Journal_volume 58 _Journal_issue 'Pt 4' _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 615 _Page_last 621 _Year 2002 _Details ; The trp RNA-binding attenuation protein (TRAP) regulates expression of the tryptophan biosynthetic genes in bacilli by binding to the leader region of the nascent trp operon mRNA. When activated by binding tryptophan, the 11-subunit circular TRAP molecule binds to a target sequence consisting of 11 (G/U)AG repeats, separated by two or three variable 'spacer' nucleotides. Reported here are two crystal structures of TRAP bound to RNAs containing 11 GAG repeats separated by UU and CC spacer nucleotides, determined at 1.75 and 2.50 A resolution, respectively. These show the spacer regions of the RNA molecules to be highly flexible, making no direct hydrogen-bonding contacts with the protein. Comparison of these structures with the previous structure of TRAP bound to (GAGAU)(10)GAG RNA, in which the spacer nucleotides stack with each other close to the protein surface, shows that the RNA can adopt different conformations depending on the sequence of the spacer regions. This gives insight into the structural basis of the specificity of TRAP and into the mechanism of binding. ; save_ ################################## # Molecular system description # ################################## save_system_TRAP _Saveframe_category molecular_system _Mol_system_name 'trp RNA-binding attenuation protein undecamer' _Abbreviation_common TRAP _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'TRAP subunit A' $TRAP 'TRAP subunit B' $TRAP 'TRAP subunit C' $TRAP 'TRAP subunit D' $TRAP 'TRAP subunit E' $TRAP 'TRAP subunit F' $TRAP 'TRAP subunit G' $TRAP 'TRAP subunit H' $TRAP 'TRAP subunit I' $TRAP 'TRAP subunit J' $TRAP 'TRAP subunit K' $TRAP 'L-tryptophan, 1' $entity_TRP 'L-tryptophan, 2' $entity_TRP 'L-tryptophan, 3' $entity_TRP 'L-tryptophan, 4' $entity_TRP 'L-tryptophan, 5' $entity_TRP 'L-tryptophan, 6' $entity_TRP 'L-tryptophan, 7' $entity_TRP 'L-tryptophan, 8' $entity_TRP 'L-tryptophan, 9' $entity_TRP 'L-tryptophan, 10' $entity_TRP 'L-tryptophan, 11' $entity_TRP stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state undecamer _System_paramagnetic no _System_thiol_state 'not present' loop_ _Magnetic_equivalence_ID _Magnetically_equivalent_system_component 1 'TRAP subunit A' 1 'TRAP subunit B' 1 'TRAP subunit C' 1 'TRAP subunit D' 1 'TRAP subunit E' 1 'TRAP subunit F' 1 'TRAP subunit G' 1 'TRAP subunit H' 1 'TRAP subunit I' 1 'TRAP subunit J' 1 'TRAP subunit K' 2 'L-tryptophan, 1' 2 'L-tryptophan, 2' 2 'L-tryptophan, 3' 2 'L-tryptophan, 4' 2 'L-tryptophan, 5' 2 'L-tryptophan, 6' 2 'L-tryptophan, 7' 2 'L-tryptophan, 8' 2 'L-tryptophan, 9' 2 'L-tryptophan, 10' 2 'L-tryptophan, 11' stop_ loop_ _Biological_function 'transcriptional regulation' 'translational regulation' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_TRAP _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'trp RNA-binding attenuation protein' _Abbreviation_common TRAP _Molecular_mass 8243 _Mol_thiol_state 'not present' _Details ; undecamer mass 90673 undecamer mass with ligand bound 92920 ; ############################## # Polymer residue sequence # ############################## _Residue_count 74 _Mol_residue_sequence ; MYTNSDFVVIKALEDGVNVI GLTRGADTRFHHSEKLDKGE VLIAQFTEHTSAIKVRGKAY IQTRHGVIESEGKK ; loop_ _Residue_seq_code _Residue_label 1 MET 2 TYR 3 THR 4 ASN 5 SER 6 ASP 7 PHE 8 VAL 9 VAL 10 ILE 11 LYS 12 ALA 13 LEU 14 GLU 15 ASP 16 GLY 17 VAL 18 ASN 19 VAL 20 ILE 21 GLY 22 LEU 23 THR 24 ARG 25 GLY 26 ALA 27 ASP 28 THR 29 ARG 30 PHE 31 HIS 32 HIS 33 SER 34 GLU 35 LYS 36 LEU 37 ASP 38 LYS 39 GLY 40 GLU 41 VAL 42 LEU 43 ILE 44 ALA 45 GLN 46 PHE 47 THR 48 GLU 49 HIS 50 THR 51 SER 52 ALA 53 ILE 54 LYS 55 VAL 56 ARG 57 GLY 58 LYS 59 ALA 60 TYR 61 ILE 62 GLN 63 THR 64 ARG 65 HIS 66 GLY 67 VAL 68 ILE 69 GLU 70 SER 71 GLU 72 GLY 73 LYS 74 LYS stop_ _Sequence_homology_query_date 2008-08-19 _Sequence_homology_query_revised_last_date 2008-08-19 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1C9S ; Crystal Structure Of A Complex Of Trp Rna-Binding Attenuation Protein With A 53-Base Single Stranded Rna Containing Eleven Gag Triplets Separated By Au Dinucleotides ; 100.00 74 100.00 100.00 4.24e-35 PDB 1GTF 'The Structure Of The Trp Rna-Binding Attenuation Protein (Trap) Bound To A 53-Nucleotide Rna Molecule Containing Gaguu Repeats' 100.00 74 100.00 100.00 4.24e-35 PDB 1GTN 'Structure Of The Trp Rna-Binding Attenuation Protein (Trap) Bound To An Rna Molecule Containing 11 Gagcc Repeats' 100.00 74 100.00 100.00 4.24e-35 PDB 1QAW ; Regulatory Features Of The Trp Operon And The Crystal Structure Of The Trp Rna-Binding Attenuation Protein From Bacillus Stearothermophilus. ; 100.00 74 100.00 100.00 4.24e-35 PDB 1UTD 'The Structure Of The Trp Ran-Binding Attenuation Protein (Trap) Bound To A 63-Nucleotide Rna Molecule Containing Gaguuu Repeats' 100.00 74 100.00 100.00 4.24e-35 PDB 1UTF 'The Structure Of The Trp Rna-Binding Attenuation Protein (Trap) Bound To A Rna Molecule Containing Uagau Repeats (Part I)' 100.00 74 100.00 100.00 4.24e-35 PDB 1UTV 'The Structure Of The Trp Rna-Binding Attenuation Protein (Trap) Bound To A Rna Molecule Containing Uagau Repeats (Part Ii)' 100.00 74 100.00 100.00 4.24e-35 PDB 2EXS 'Trap3 (Engineered Trap)' 98.65 77 98.63 98.63 8.92e-34 PDB 2EXT 'Trap4 (Engineered Trap)' 98.65 77 100.00 100.00 1.61e-34 PDB 2ZCZ 'Crytal Structures And Thermostability Of Mutant Trap3 A7 (Engineered Trap)' 100.00 81 100.00 100.00 1.51e-35 PDB 2ZD0 'Crytal Structures And Thermostability Of Mutant Trap3 A5 (Engineered Trap)' 100.00 79 100.00 100.00 2.05e-35 DBJ BAD76498 ; transcription attenuation protein (tryptophan RNA-binding attenuator protein) (trp RNA-binding attenuation protein) [Geobacillus kaustophilus HTA426] ; 100.00 74 98.65 100.00 6.07e-35 GenBank AAD33793 'trp RNA-binding attenuation protein [Geobacillus stearothermophilus]' 100.00 74 100.00 100.00 4.24e-35 GenBank ABO67499 'Trp RNA-binding attenuation protein [Geobacillus thermodenitrificans NG80-2]' 100.00 75 98.65 98.65 1.04e-34 REF YP_001126244 'transcription attenuation protein MtrB [Geobacillus thermodenitrificans NG80-2]' 100.00 75 98.65 98.65 1.04e-34 REF YP_148066 'transcription attenuation protein MtrB [Geobacillus kaustophilus HTA426]' 100.00 74 98.65 100.00 6.07e-35 SWISS-PROT Q9X6J6 'Transcription attenuation protein mtrB (Tryptophan RNA-binding attenuator protein) (Trp RNA-binding attenuation protein) (TRAP)' 100.00 74 100.00 100.00 4.24e-35 stop_ save_ ############# # Ligands # ############# save_TRP _Saveframe_category ligand _Mol_type "non-polymer (L-PEPTIDE LINKING)" _Name_common TRYPTOPHAN _BMRB_code TRP _PDB_code TRP _Molecular_mass 204.225 _Mol_charge 0 _Mol_paramagnetic . _Mol_aromatic yes _Details . loop_ _Atom_name _PDB_atom_name _Atom_type _Atom_chirality _Atom_charge _Atom_oxidation_number _Atom_unpaired_electrons N N N . 0 . ? CA CA C . 0 . ? C C C . 0 . ? O O O . 0 . ? CB CB C . 0 . ? CG CG C . 0 . ? CD1 CD1 C . 0 . ? CD2 CD2 C . 0 . ? NE1 NE1 N . 0 . ? CE2 CE2 C . 0 . ? CE3 CE3 C . 0 . ? CZ2 CZ2 C . 0 . ? CZ3 CZ3 C . 0 . ? CH2 CH2 C . 0 . ? OXT OXT O . 0 . ? H H H . 0 . ? H2 H2 H . 0 . ? HA HA H . 0 . ? HB2 HB2 H . 0 . ? HB3 HB3 H . 0 . ? HD1 HD1 H . 0 . ? HE1 HE1 H . 0 . ? HE3 HE3 H . 0 . ? HZ2 HZ2 H . 0 . ? HZ3 HZ3 H . 0 . ? HH2 HH2 H . 0 . ? HXT HXT H . 0 . ? stop_ loop_ _Bond_order _Bond_atom_one_atom_name _Bond_atom_two_atom_name _PDB_bond_atom_one_atom_name _PDB_bond_atom_two_atom_name SING N CA ? ? SING N H ? ? SING N H2 ? ? SING CA C ? ? SING CA CB ? ? SING CA HA ? ? DOUB C O ? ? SING C OXT ? ? SING CB CG ? ? SING CB HB2 ? ? SING CB HB3 ? ? DOUB CG CD1 ? ? SING CG CD2 ? ? SING CD1 NE1 ? ? SING CD1 HD1 ? ? DOUB CD2 CE2 ? ? SING CD2 CE3 ? ? SING NE1 CE2 ? ? SING NE1 HE1 ? ? SING CE2 CZ2 ? ? DOUB CE3 CZ3 ? ? SING CE3 HE3 ? ? DOUB CZ2 CH2 ? ? SING CZ2 HZ2 ? ? SING CZ3 CH2 ? ? SING CZ3 HZ3 ? ? SING CH2 HH2 ? ? SING OXT HXT ? ? stop_ _Mol_thiol_state . _Sequence_homology_query_date . save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $TRAP 'Geobacillus stearothermophilus' 1422 Bacteria . Bacillus stearothermophilus stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $TRAP 'recombinant technology' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $TRAP 6.6 mM '[U-2H; U-13C; U-15N]' $entity_TRP 6.6 mM '[U-2H; U-13C; U-15N]' stop_ save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model DRX _Field_strength 800 _Details . save_ ############################# # NMR applied experiments # ############################# save_TROSY_1 _Saveframe_category NMR_applied_experiment _Experiment_name TROSY _Sample_label $sample_1 save_ save_TROSY-HNCA_2 _Saveframe_category NMR_applied_experiment _Experiment_name TROSY-HNCA _Sample_label $sample_1 save_ save_TROSY-HN(CO)CA_3 _Saveframe_category NMR_applied_experiment _Experiment_name TROSY-HN(CO)CA _Sample_label $sample_1 save_ save_TROSY-HNCACB_4 _Saveframe_category NMR_applied_experiment _Experiment_name TROSY-HNCACB _Sample_label $sample_1 save_ save_TROSY-HNCO_5 _Saveframe_category NMR_applied_experiment _Experiment_name TROSY-HNCO _Sample_label $sample_1 save_ ####################### # Sample conditions # ####################### save_condition_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 8.0 0.1 pH temperature 328 0.5 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.000000000 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Experiment_label TROSY TROSY-HNCA TROSY-HN(CO)CA TROSY-HNCACB TROSY-HNCO stop_ loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $condition_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'TRAP subunit A' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 8 8 VAL H H 7.8960 0.0153 1 2 8 8 VAL C C 179.1400 0.0000 1 3 8 8 VAL CA C 58.6250 0.3660 1 4 8 8 VAL N N 115.3860 0.0578 1 5 9 9 VAL H H 8.5410 0.0153 1 6 9 9 VAL C C 177.9188 0.0000 1 7 9 9 VAL CA C 61.4830 0.3660 1 8 9 9 VAL CB C 33.9580 2.1390 1 9 9 9 VAL N N 124.9350 0.0578 1 10 10 10 ILE H H 9.2200 0.0153 1 11 10 10 ILE CA C 60.2440 0.3660 1 12 10 10 ILE CB C 40.8660 2.1390 1 13 10 10 ILE N N 126.9940 0.0578 1 14 11 11 LYS H H 9.3550 0.0153 1 15 11 11 LYS C C 176.2136 0.0000 1 16 11 11 LYS CA C 53.1010 0.3660 1 17 11 11 LYS CB C 35.8780 2.1390 1 18 11 11 LYS N N 128.1160 0.0578 1 19 12 12 ALA H H 8.3090 0.0153 1 20 12 12 ALA C C 174.2298 0.0000 1 21 12 12 ALA CA C 53.0670 0.3660 1 22 12 12 ALA CB C 19.9210 2.1390 1 23 12 12 ALA N N 130.4230 0.0578 1 24 13 13 LEU H H 8.9810 0.0153 1 25 13 13 LEU C C 177.1714 0.0000 1 26 13 13 LEU CA C 53.6260 0.3660 1 27 13 13 LEU CB C 41.1800 2.1390 1 28 13 13 LEU N N 124.4500 0.0578 1 29 14 14 GLU H H 7.6930 0.0153 1 30 14 14 GLU C C 179.6025 0.0000 1 31 14 14 GLU CA C 53.3300 0.3660 1 32 14 14 GLU CB C 31.7490 2.1390 1 33 14 14 GLU N N 117.1640 0.0578 1 34 15 15 ASP H H 8.2880 0.0153 1 35 15 15 ASP CA C 54.9860 0.3660 1 36 15 15 ASP CB C 40.5970 2.1390 1 37 15 15 ASP N N 118.3370 0.0578 1 38 16 16 GLY C C 177.2614 0.0000 1 39 16 16 GLY CA C 46.1480 0.3660 1 40 17 17 VAL H H 7.6550 0.0153 1 41 17 17 VAL C C 176.8610 0.0000 1 42 17 17 VAL CA C 63.3660 0.3660 1 43 17 17 VAL CB C 32.1030 2.1390 1 44 17 17 VAL N N 124.0820 0.0578 1 45 18 18 ASN H H 8.6590 0.0153 1 46 18 18 ASN C C 179.3636 0.0000 1 47 18 18 ASN CA C 51.7920 0.3660 1 48 18 18 ASN CB C 41.8560 2.1390 1 49 18 18 ASN N N 125.2680 0.0578 1 50 19 19 VAL H H 8.4800 0.0153 1 51 19 19 VAL C C 178.3280 0.0000 1 52 19 19 VAL CA C 61.7620 0.3660 1 53 19 19 VAL CB C 31.6880 2.1390 1 54 19 19 VAL N N 124.6440 0.0578 1 55 20 20 ILE H H 9.3260 0.0153 1 56 20 20 ILE CA C 59.9260 0.3660 1 57 20 20 ILE CB C 40.0430 2.1390 1 58 20 20 ILE N N 129.2550 0.0578 1 59 21 21 GLY H H 8.7900 0.0153 1 60 21 21 GLY CA C 45.3640 0.3660 1 61 21 21 GLY N N 114.2960 0.0578 1 62 22 22 LEU H H 8.5150 0.0153 1 63 22 22 LEU CA C 54.2210 0.3660 1 64 22 22 LEU CB C 41.4570 2.1390 1 65 22 22 LEU N N 127.5260 0.0578 1 66 23 23 THR H H 8.5820 0.0153 1 67 23 23 THR CA C 60.4440 0.3660 1 68 23 23 THR CB C 69.6270 2.1390 1 69 23 23 THR N N 110.6970 0.0578 1 70 24 24 ARG H H 7.3360 0.0153 1 71 24 24 ARG CA C 55.8410 0.3660 1 72 24 24 ARG CB C 30.3970 2.1390 1 73 24 24 ARG N N 124.6140 0.0578 1 74 25 25 GLY H H 7.9690 0.0153 1 75 25 25 GLY CA C 43.3750 0.3660 1 76 25 25 GLY N N 115.4110 0.0578 1 77 30 30 PHE C C 175.1916 0.0000 1 78 30 30 PHE CA C 54.7750 0.3660 1 79 30 30 PHE CB C 37.3400 2.1390 1 80 31 31 HIS H H 8.4290 0.0153 1 81 31 31 HIS CA C 55.8460 0.3660 1 82 31 31 HIS CB C 32.3020 2.1390 1 83 31 31 HIS N N 122.5620 0.0578 1 84 32 32 HIS H H 9.6870 0.0153 1 85 32 32 HIS CA C 57.4380 0.3660 1 86 32 32 HIS CB C 33.7150 2.1390 1 87 32 32 HIS N N 119.4710 0.0578 1 88 33 33 SER H H 6.9490 0.0153 1 89 33 33 SER C C 179.7877 0.0000 1 90 33 33 SER CA C 55.4420 0.3660 1 91 33 33 SER CB C 63.6370 2.1390 1 92 33 33 SER N N 121.2170 0.0578 1 93 34 34 GLU H H 9.2040 0.0153 1 94 34 34 GLU C C 177.8255 0.0000 1 95 34 34 GLU CA C 53.8340 0.3660 1 96 34 34 GLU CB C 30.7050 2.1390 1 97 34 34 GLU N N 129.8480 0.0578 1 98 35 35 LYS H H 8.0380 0.0153 1 99 35 35 LYS C C 176.4405 0.0000 1 100 35 35 LYS CA C 54.9550 0.3660 1 101 35 35 LYS CB C 31.8720 2.1390 1 102 35 35 LYS N N 129.2580 0.0578 1 103 36 36 LEU H H 9.0440 0.0153 1 104 36 36 LEU C C 177.1515 0.0000 1 105 36 36 LEU CA C 53.1260 0.3660 1 106 36 36 LEU CB C 45.3180 2.1390 1 107 36 36 LEU N N 128.7120 0.0578 1 108 37 37 ASP H H 8.4720 0.0153 1 109 37 37 ASP C C 176.7482 0.0000 1 110 37 37 ASP CA C 52.4330 0.3660 1 111 37 37 ASP CB C 41.8260 2.1390 1 112 37 37 ASP N N 123.4800 0.0578 1 113 38 38 LYS H H 8.7100 0.0153 1 114 38 38 LYS C C 175.0256 0.0000 1 115 38 38 LYS CA C 59.3760 0.3660 1 116 38 38 LYS CB C 31.8100 2.1390 1 117 38 38 LYS N N 119.4840 0.0578 1 118 39 39 GLY H H 8.5570 0.0153 1 119 39 39 GLY C C 178.2853 0.0000 1 120 39 39 GLY CA C 45.1750 0.3660 1 121 39 39 GLY N N 115.5460 0.0578 1 122 40 40 GLU H H 8.1230 0.0153 1 123 40 40 GLU C C 176.8562 0.0000 1 124 40 40 GLU CA C 56.7890 0.3660 1 125 40 40 GLU CB C 31.8100 2.1390 1 126 40 40 GLU N N 120.7060 0.0578 1 127 41 41 VAL H H 7.4540 0.0153 1 128 41 41 VAL C C 178.7112 0.0000 1 129 41 41 VAL CA C 59.6140 0.3660 1 130 41 41 VAL CB C 35.6190 2.1390 1 131 41 41 VAL N N 118.9090 0.0578 1 132 42 42 LEU H H 9.2580 0.0153 1 133 42 42 LEU C C 178.5874 0.0000 1 134 42 42 LEU CA C 52.3890 0.3660 1 135 42 42 LEU CB C 46.6180 2.1390 1 136 42 42 LEU N N 128.7260 0.0578 1 137 43 43 ILE H H 9.3880 0.0153 1 138 43 43 ILE C C 177.0136 0.0000 1 139 43 43 ILE CA C 60.2960 0.3660 1 140 43 43 ILE CB C 38.2620 2.1390 1 141 43 43 ILE N N 128.6980 0.0578 1 142 44 44 ALA H H 8.7840 0.0153 1 143 44 44 ALA C C 182.0850 0.0000 1 144 44 44 ALA CA C 50.6710 0.3660 1 145 44 44 ALA CB C 21.5200 2.1390 1 146 44 44 ALA N N 128.7040 0.0578 1 147 45 45 GLN H H 7.6970 0.0153 1 148 45 45 GLN C C 176.9307 0.0000 1 149 45 45 GLN CA C 55.4030 0.3660 1 150 45 45 GLN CB C 31.1350 2.1390 1 151 45 45 GLN N N 120.6360 0.0578 1 152 46 46 PHE H H 7.1240 0.0153 1 153 46 46 PHE CA C 59.4950 0.3660 1 154 46 46 PHE CB C 39.5390 2.1390 1 155 46 46 PHE N N 117.2200 0.0578 1 156 47 47 THR CA C 59.4350 0.3660 1 157 48 48 GLU H H 8.0990 0.0153 1 158 48 48 GLU CA C 54.2930 0.3660 1 159 48 48 GLU N N 113.0970 0.0578 1 160 49 49 HIS H H 8.6780 0.0153 1 161 49 49 HIS C C 176.4905 0.0000 1 162 49 49 HIS CA C 58.5530 0.3660 1 163 49 49 HIS N N 117.1130 0.0578 1 164 50 50 THR H H 7.7820 0.0153 1 165 50 50 THR CA C 60.2170 0.3660 1 166 50 50 THR CB C 69.1440 2.1390 1 167 50 50 THR N N 120.7180 0.0578 1 168 51 51 SER H H 7.5880 0.0153 1 169 51 51 SER C C 180.6995 0.0000 1 170 51 51 SER CA C 56.3740 0.3660 1 171 51 51 SER CB C 64.9580 2.1390 1 172 51 51 SER N N 118.2790 0.0578 1 173 52 52 ALA H H 7.5750 0.0153 1 174 52 52 ALA C C 178.2423 0.0000 1 175 52 52 ALA CA C 51.5650 0.3660 1 176 52 52 ALA CB C 20.6590 2.1390 1 177 52 52 ALA N N 121.1340 0.0578 1 178 53 53 ILE H H 9.1740 0.0153 1 179 53 53 ILE C C 178.7465 0.0000 1 180 53 53 ILE CA C 59.5710 0.3660 1 181 53 53 ILE CB C 42.8080 2.1390 1 182 53 53 ILE N N 122.3160 0.0578 1 183 54 54 LYS H H 9.3580 0.0153 1 184 54 54 LYS C C 178.2740 0.0000 1 185 54 54 LYS CA C 53.6020 0.3660 1 186 54 54 LYS CB C 35.8170 2.1390 1 187 54 54 LYS N N 130.3890 0.0578 1 188 55 55 VAL H H 9.0600 0.0153 1 189 55 55 VAL C C 178.1228 0.0000 1 190 55 55 VAL CA C 61.4920 0.3660 1 191 55 55 VAL CB C 33.6540 2.1390 1 192 55 55 VAL N N 126.4260 0.0578 1 193 56 56 ARG H H 8.3860 0.0153 1 194 56 56 ARG C C 177.1318 0.0000 1 195 56 56 ARG CA C 54.4960 0.3660 1 196 56 56 ARG CB C 33.1010 2.1390 1 197 56 56 ARG N N 125.8360 0.0578 1 198 57 57 GLY H H 8.2050 0.0153 1 199 57 57 GLY C C 180.1373 0.0000 1 200 57 57 GLY CA C 42.9230 0.3660 1 201 57 57 GLY N N 114.2470 0.0578 1 202 58 58 LYS H H 8.8540 0.0153 1 203 58 58 LYS C C 178.2263 0.0000 1 204 58 58 LYS CA C 56.6460 0.3660 1 205 58 58 LYS CB C 32.7320 2.1390 1 206 58 58 LYS N N 123.4940 0.0578 1 207 59 59 ALA H H 7.9890 0.0153 1 208 59 59 ALA C C 176.6476 0.0000 1 209 59 59 ALA CA C 50.8820 0.3660 1 210 59 59 ALA CB C 22.7180 2.1390 1 211 59 59 ALA N N 129.8820 0.0578 1 212 60 60 TYR H H 8.9600 0.0153 1 213 60 60 TYR C C 178.5729 0.0000 1 214 60 60 TYR CA C 57.1900 0.3660 1 215 60 60 TYR CB C 40.7810 2.1390 1 216 60 60 TYR N N 124.2830 0.0578 1 217 61 61 ILE H H 8.4640 0.0153 1 218 61 61 ILE C C 177.8985 0.0000 1 219 61 61 ILE CA C 59.5900 0.3660 1 220 61 61 ILE CB C 39.4680 2.1390 1 221 61 61 ILE N N 129.3000 0.0578 1 222 62 62 GLN H H 9.0760 0.0153 1 223 62 62 GLN C C 177.0763 0.0000 1 224 62 62 GLN CA C 53.7280 0.3660 1 225 62 62 GLN CB C 31.6880 2.1390 1 226 62 62 GLN N N 124.0200 0.0578 1 227 63 63 THR H H 8.1780 0.0153 1 228 63 63 THR CA C 59.4730 0.3660 1 229 63 63 THR CB C 72.0540 2.1390 1 230 63 63 THR N N 113.0830 0.0578 1 231 64 64 ARG H H 8.5650 0.0153 1 232 64 64 ARG CA C 57.6180 0.3660 1 233 64 64 ARG N N 120.0550 0.0578 1 234 65 65 HIS H H 7.5180 0.0153 1 235 65 65 HIS C C 177.0004 0.0000 1 236 65 65 HIS CA C 54.0290 0.3660 1 237 65 65 HIS CB C 30.7050 2.1390 1 238 65 65 HIS N N 115.4660 0.0578 1 239 66 66 GLY H H 7.3100 0.0153 1 240 66 66 GLY C C 179.5191 0.0000 1 241 66 66 GLY CA C 43.7450 0.3660 1 242 66 66 GLY N N 107.3250 0.0578 1 243 67 67 VAL H H 8.2200 0.0153 1 244 67 67 VAL C C 176.8178 0.0000 1 245 67 67 VAL CA C 59.7510 0.3660 1 246 67 67 VAL CB C 33.8680 2.1390 1 247 67 67 VAL N N 121.7460 0.0578 1 248 68 68 ILE H H 8.9680 0.0153 1 249 68 68 ILE C C 181.0301 0.0000 1 250 68 68 ILE CA C 59.0220 0.3660 1 251 68 68 ILE CB C 41.7330 2.1390 1 252 68 68 ILE N N 126.9810 0.0578 1 253 69 69 GLU H H 7.7110 0.0153 1 254 69 69 GLU CA C 53.9410 0.3660 1 255 69 69 GLU CB C 31.9340 2.1390 1 256 69 69 GLU N N 123.4810 0.0578 1 257 70 70 SER H H 8.8030 0.0153 1 258 70 70 SER CA C 57.1000 0.3660 1 259 70 70 SER CB C 64.6200 2.1390 1 260 70 70 SER N N 119.5860 0.0578 1 stop_ save_ save_shift_set_2 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Experiment_label TROSY TROSY-HNCA TROSY-HN(CO)CA TROSY-HNCACB TROSY-HNCO stop_ loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $condition_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'TRAP subunit B' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 TRP NE1 N 130.017 0.0578 1 2 . 1 TRP HE1 H 10.333 0.0153 1 stop_ save_