Study_ID,BMRB_accession_code,BMRB_entry_description,Details,Sf_ID,Entry_ID,Study_list_ID 1,6214,Glycinated Mastoparan-X in the other condition,"NMR spectra were obtained from Glycinated Mastoparan-X after the evaporation of methanol that contained it.",14,10001,1 1,10012,Assigned chemical shift entry,,212,10012,1 1,25323,13C6-15N5-ARG,,126185,25295,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126185,25295,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126185,25295,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126185,25295,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126185,25295,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126185,25295,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126185,25295,1 1,25316,ACE-ALA,,126185,25295,1 1,25295,ALA-NH2,,126185,25295,1 1,25323,13C6-15N5-ARG,,126590,25316,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126590,25316,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126590,25316,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126590,25316,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126590,25316,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126590,25316,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126590,25316,1 1,25316,ACE-ALA,,126590,25316,1 1,25295,ALA-NH2,,126590,25316,1 1,25323,13C6-15N5-ARG,,126609,25317,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126609,25317,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126609,25317,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126609,25317,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126609,25317,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126609,25317,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126609,25317,1 1,25316,ACE-ALA,,126609,25317,1 1,25295,ALA-NH2,,126609,25317,1 1,25323,13C6-15N5-ARG,,126628,25318,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126628,25318,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126628,25318,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126628,25318,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126628,25318,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126628,25318,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126628,25318,1 1,25316,ACE-ALA,,126628,25318,1 1,25295,ALA-NH2,,126628,25318,1 1,25323,13C6-15N5-ARG,,126647,25319,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126647,25319,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126647,25319,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126647,25319,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126647,25319,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126647,25319,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126647,25319,1 1,25316,ACE-ALA,,126647,25319,1 1,25295,ALA-NH2,,126647,25319,1 1,25323,13C6-15N5-ARG,,126666,25320,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126666,25320,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126666,25320,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126666,25320,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126666,25320,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126666,25320,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126666,25320,1 1,25316,ACE-ALA,,126666,25320,1 1,25295,ALA-NH2,,126666,25320,1 1,25323,13C6-15N5-ARG,,126685,25321,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126685,25321,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126685,25321,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126685,25321,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126685,25321,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126685,25321,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126685,25321,1 1,25316,ACE-ALA,,126685,25321,1 1,25295,ALA-NH2,,126685,25321,1 1,25323,13C6-15N5-ARG,,126704,25322,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126704,25322,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126704,25322,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126704,25322,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126704,25322,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126704,25322,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126704,25322,1 1,25316,ACE-ALA,,126704,25322,1 1,25295,ALA-NH2,,126704,25322,1 1,25323,13C6-15N5-ARG,,126723,25323,1 1,25322,ACE-GLY-LYS-GLY-NH2,,126723,25323,1 1,25321,ACE-GLY-TYR-GLY-NH2,,126723,25323,1 1,25320,ACE-GLY-CYS-GLY-NH2,,126723,25323,1 1,25319,ACE-GLY-HIS-GLY-NH2,,126723,25323,1 1,25318,ACE-GLY-GLU-GLY-NH2,,126723,25323,1 1,25317,ACE-GLY-ASP-GLY-NH2,,126723,25323,1 1,25316,ACE-ALA,,126723,25323,1 1,25295,ALA-NH2,,126723,25323,1 1,7089,Assigned chemical shift entry,Virtually Complete 13C 15N and 1H chemical shift assignments,136265,25859,1 1,25888,F1F2-DNA complex,,136756,25888,1 1,25889,F1F2 free,,136756,25888,1 1,25890,DNA free,,136756,25888,1 1,25891,F1F2F3-DNA complex,,136756,25888,1 1,25892,F1F2F3 free,,136756,25888,1 1,25893,F3 free,,136756,25888,1 1,25894,F1F2F3-WGR-DNA complex,,136756,25888,1 1,25895,WGR free,,136756,25888,1 1,25888,F1F2-DNA complex,,136798,25889,1 1,25889,F1F2 free,,136798,25889,1 1,25890,DNA free,,136798,25889,1 1,25891,F1F2F3-DNA complex,,136798,25889,1 1,25892,F1F2F3 free,,136798,25889,1 1,25893,F3 free,,136798,25889,1 1,25894,F1F2F3-WGR-DNA complex,,136798,25889,1 1,25895,WGR free,,136798,25889,1 1,25888,F1F2-DNA complex,,136822,25890,1 1,25889,F1F2 free,,136822,25890,1 1,25890,DNA free,,136822,25890,1 1,25891,F1F2F3-DNA complex,,136822,25890,1 1,25892,F1F2F3 free,,136822,25890,1 1,25893,F3 free,,136822,25890,1 1,25894,F1F2F3-WGR-DNA complex,,136822,25890,1 1,25895,WGR free,,136822,25890,1 1,25888,F1F2-DNA complex,,136847,25891,1 1,25889,F1F2 free,,136847,25891,1 1,25890,DNA free,,136847,25891,1 1,25891,F1F2F3-DNA complex,,136847,25891,1 1,25892,F1F2F3 free,,136847,25891,1 1,25893,F3 free,,136847,25891,1 1,25894,F1F2F3-WGR-DNA complex,,136847,25891,1 1,25895,WGR free,,136847,25891,1 1,25888,F1F2-DNA complex,,136873,25892,1 1,25889,F1F2 free,,136873,25892,1 1,25890,DNA free,,136873,25892,1 1,25891,F1F2F3-DNA complex,,136873,25892,1 1,25892,F1F2F3 free,,136873,25892,1 1,25893,F3 free,,136873,25892,1 1,25894,F1F2F3-WGR-DNA complex,,136873,25892,1 1,25895,WGR free,,136873,25892,1 1,25888,F1F2-DNA complex,,136898,25893,1 1,25889,F1F2 free,,136898,25893,1 1,25890,DNA free,,136898,25893,1 1,25891,F1F2F3-DNA complex,,136898,25893,1 1,25892,F1F2F3 free,,136898,25893,1 1,25893,F3 free,,136898,25893,1 1,25894,F1F2F3-WGR-DNA complex,,136898,25893,1 1,25895,WGR free,,136898,25893,1 1,25888,F1F2-DNA complex,,136921,25894,1 1,25889,F1F2 free,,136921,25894,1 1,25890,DNA free,,136921,25894,1 1,25891,F1F2F3-DNA complex,,136921,25894,1 1,25892,F1F2F3 free,,136921,25894,1 1,25893,F3 free,,136921,25894,1 1,25894,F1F2F3-WGR-DNA complex,,136921,25894,1 1,25895,WGR free,,136921,25894,1 1,25888,F1F2-DNA complex,,136949,25895,1 1,25889,F1F2 free,,136949,25895,1 1,25890,DNA free,,136949,25895,1 1,25891,F1F2F3-DNA complex,,136949,25895,1 1,25892,F1F2F3 free,,136949,25895,1 1,25893,F3 free,,136949,25895,1 1,25894,F1F2F3-WGR-DNA complex,,136949,25895,1 1,25895,WGR free,,136949,25895,1 ,none,,,248193,6527,1 1,6536,Assignments of the hSH3-1 domain in reduced form,,248408,6539,1 1,4697,Assigned chemical shift entry,"Complete 13C, 15N and 1H chemical shift assignments for Bacillus stearothermophilus IF2-C2",249131,6577,1 ,063205,assigned_chemical_shifts,structural study of peptide derived from salivary lytic protein,249900,6616,1 ,013205,assigned_chemical_shifts,structural study of peptide derived from salivary lytic protein,249934,6618,1 ,012705,assigned_chemical_shifts,structural study of peptide derived from salivary lytic protein,249952,6619,1 ,,Assigned chemical shifts for murine p22HBP,13C 15N and 1H chemical shift assignments,249983,6620,1 1,,Assigned chemical shift entry,"Complete aliphatic 1H, 15N, and 13C chemical shift assignments",250015,6621,1 ,pending,assignments for two-zinc finger protein of Zap1,backbone and side chain resonance assignments for zinc fingers 1 and 2 of Zap1 from Saccharomyces cerevisiae. Three non-zinc-liganding cysteines were mutated to alanines in order to obtain a stable protein for NMR data collection.,250489,6648,1 ,pending,assignments for finger 1 of Zap1,backbone resonance assignments for zinc finger 1 and a C-terminal disordered linker region of the Zap1 protein from Saccharomyces cerevisiae.,250489,6648,1 ,pending,assignments for finger 1 of Zap1,"backbone resonance assignments for zinc finger 1 and a C-terminal disordered linker region of the Zap1 protein from Saccharomyces cerevisiae.",250624,6653,1 ,pending,assignments for two-zinc finger protein of Zap1,"backbone and side chain resonance assignments for zinc fingers 1 and 2 of Zap1 from Saccharomyces cerevisiae. Three non-zinc-liganding cysteines were mutated to alanines in order to obtain a stable protein for NMR data collection.",250624,6653,1 ,6662,wild-type rubredoxin from Clostridium pasteurianum in the reduceded state,reduction potential = -77 mV,250776,6659,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250776,6659,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250776,6659,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250776,6659,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250776,6659,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250776,6659,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250776,6659,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250776,6659,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250776,6659,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250776,6659,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250776,6659,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250776,6659,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250776,6659,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250776,6659,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250776,6659,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250776,6659,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250776,6659,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250776,6659,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250776,6659,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250805,6660,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250805,6660,1 ,6662,wild-type rubredoxin from Clostridium pasteurianum in the reduceded state,reduction potential = -77 mV,250805,6660,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250805,6660,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250805,6660,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250805,6660,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250805,6660,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250805,6660,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250805,6660,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250805,6660,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250805,6660,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250805,6660,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250805,6660,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250805,6660,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250805,6660,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250805,6660,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250805,6660,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250805,6660,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250805,6660,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250821,6661,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250821,6661,1 ,6662,wild-type rubredoxin from Clostridium pasteurianum in the reduceded state,reduction potential = -77 mV,250821,6661,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250821,6661,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250821,6661,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250821,6661,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250821,6661,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250821,6661,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250821,6661,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250821,6661,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250821,6661,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250821,6661,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250821,6661,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250821,6661,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250821,6661,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250821,6661,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250821,6661,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250821,6661,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250821,6661,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250837,6662,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250837,6662,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250837,6662,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250837,6662,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250837,6662,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250837,6662,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250837,6662,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250837,6662,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250837,6662,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250837,6662,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250837,6662,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250837,6662,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250837,6662,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250837,6662,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250837,6662,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250837,6662,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250837,6662,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250837,6662,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250837,6662,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250853,6663,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250853,6663,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250853,6663,1 ,6662,wild-type rubredoxin from Clostridium pasteurianum in the reduceded state,reduction potential = -77 mV,250853,6663,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250853,6663,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250853,6663,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250853,6663,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250853,6663,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250853,6663,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250853,6663,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250853,6663,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250853,6663,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250853,6663,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250853,6663,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250853,6663,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250853,6663,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250853,6663,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250853,6663,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250853,6663,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250853,6663,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250869,6664,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250869,6664,1 ,6662,wild-type rubredoxin from Clostridium pasteurianum in the reduceded state,reduction potential = -77 mV,250869,6664,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250869,6664,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250869,6664,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250869,6664,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250869,6664,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250869,6664,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250869,6664,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250869,6664,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250869,6664,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250869,6664,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250869,6664,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250869,6664,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250869,6664,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250869,6664,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250869,6664,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250869,6664,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250869,6664,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250885,6665,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250885,6665,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250885,6665,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250885,6665,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250885,6665,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250885,6665,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250885,6665,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250885,6665,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250885,6665,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250885,6665,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250885,6665,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250885,6665,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250885,6665,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250885,6665,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250885,6665,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250885,6665,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250885,6665,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250885,6665,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250885,6665,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250901,6666,1 ,6660,rubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250901,6666,1 ,6661,rubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250901,6666,1 ,6662,wild-type rubredoxin from Clostridium pasteurianum in the reduceded state,reduction potential = -77 mV,250901,6666,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250901,6666,1 ,6664,rubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250901,6666,1 ,6665,rubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250901,6666,1 ,6666,rubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250901,6666,1 ,6667,rubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250901,6666,1 ,6668,rubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250901,6666,1 ,6669,rubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250901,6666,1 ,6670,rubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250901,6666,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250901,6666,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250901,6666,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250901,6666,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250901,6666,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250901,6666,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250901,6666,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250901,6666,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250901,6666,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250917,6667,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250917,6667,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250917,6667,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250917,6667,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250917,6667,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250917,6667,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250917,6667,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250917,6667,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250917,6667,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250917,6667,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250917,6667,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250917,6667,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250917,6667,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250917,6667,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250917,6667,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250917,6667,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250917,6667,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250917,6667,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250917,6667,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250933,6668,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250933,6668,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250933,6668,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250933,6668,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250933,6668,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250933,6668,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250933,6668,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250933,6668,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250933,6668,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250933,6668,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250933,6668,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250933,6668,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250933,6668,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250933,6668,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250933,6668,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250933,6668,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250933,6668,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250933,6668,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250933,6668,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250949,6669,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250949,6669,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250949,6669,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250949,6669,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250949,6669,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250949,6669,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250949,6669,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250949,6669,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250949,6669,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250949,6669,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250949,6669,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250949,6669,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250949,6669,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250949,6669,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250949,6669,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250949,6669,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250949,6669,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250949,6669,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250949,6669,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250981,6670,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250981,6670,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250981,6670,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250981,6670,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250981,6670,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250981,6670,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250981,6670,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250981,6670,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250981,6670,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250981,6670,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250981,6670,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250981,6670,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250981,6670,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250981,6670,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250981,6670,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250981,6670,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250981,6670,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250981,6670,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250981,6670,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,250997,6671,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,250997,6671,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,250997,6671,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,250997,6671,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,250997,6671,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,250997,6671,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,250997,6671,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,250997,6671,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,250997,6671,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,250997,6671,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,250997,6671,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,250997,6671,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,250997,6671,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,250997,6671,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,250997,6671,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,250997,6671,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,250997,6671,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,250997,6671,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,250997,6671,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,251013,6672,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,251013,6672,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,251013,6672,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,251013,6672,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,251013,6672,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,251013,6672,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,251013,6672,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,251013,6672,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,251013,6672,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,251013,6672,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,251013,6672,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,251013,6672,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,251013,6672,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,251013,6672,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,251013,6672,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,251013,6672,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,251013,6672,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,251013,6672,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,251013,6672,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,251029,6673,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,251029,6673,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,251029,6673,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,251029,6673,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,251029,6673,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,251029,6673,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,251029,6673,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,251029,6673,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,251029,6673,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,251029,6673,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,251029,6673,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,251029,6673,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,251029,6673,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,251029,6673,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,251029,6673,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,251029,6673,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,251029,6673,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,251029,6673,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,251029,6673,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,251045,6674,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,251045,6674,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,251045,6674,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,251045,6674,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,251045,6674,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,251045,6674,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,251045,6674,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,251045,6674,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,251045,6674,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,251045,6674,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,251045,6674,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,251045,6674,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,251045,6674,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,251045,6674,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,251045,6674,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,251045,6674,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,251045,6674,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,251045,6674,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,251045,6674,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,251061,6675,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,251061,6675,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,251061,6675,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,251061,6675,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,251061,6675,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,251061,6675,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,251061,6675,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,251061,6675,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,251061,6675,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,251061,6675,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,251061,6675,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,251061,6675,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,251061,6675,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,251061,6675,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,251061,6675,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,251061,6675,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,251061,6675,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,251061,6675,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,251061,6675,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,251077,6676,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,251077,6676,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,251077,6676,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,251077,6676,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,251077,6676,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,251077,6676,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,251077,6676,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,251077,6676,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,251077,6676,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,251077,6676,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,251077,6676,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,251077,6676,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,251077,6676,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,251077,6676,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,251077,6676,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,251077,6676,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,251077,6676,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,251077,6676,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,251077,6676,1 ,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,251093,6677,1 ,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,251093,6677,1 ,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,251093,6677,1 ,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,251093,6677,1 ,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,251093,6677,1 ,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,251093,6677,1 ,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,251093,6677,1 ,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,251093,6677,1 ,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,251093,6677,1 ,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,251093,6677,1 ,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,251093,6677,1 ,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,251093,6677,1 ,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,251093,6677,1 ,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,251093,6677,1 ,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,251093,6677,1 ,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,251093,6677,1 ,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,251093,6677,1 ,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,251093,6677,1 ,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,251093,6677,1 1,6659,wild-type rubredoxin from Clostridium pasteurianum in the oxidized state,reduction potential = -77 mV,251109,6678,1 2,6660,ubredoxin (V8A) from Clostridium pasteurianum in the oxidized state,reduction potential = -44 mV,251109,6678,1 3,6661,ubredoxin (V8A) from Clostridium pasteurianum in the reduced state,reduction potential = -44 mV,251109,6678,1 4,6663,rubredoxin (V8G) from Clostridium pasteurianum in the oxidized state,reduction potential = -7 mV,251109,6678,1 5,6664,ubredoxin (V8G) from Clostridium pasteurianum in the reduced state,reduction potential = -7 mV,251109,6678,1 6,6665,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 39 mV,251109,6678,1 7,6666,ubredoxin (V8G/V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 39 mV,251109,6678,1 8,6667,ubredoxin (V8I) from Clostridium pasteurianum in the oxidized state,reduction potential = -81 mV,251109,6678,1 9,6668,ubredoxin (V8I) from Clostridium pasteurianum in the reduced state,reduction potential = -81 mV,251109,6678,1 10,6669,ubredoxin (V8L) from Clostridium pasteurianum in the oxidized state,reduction potential = -82 mV,251109,6678,1 11,6670,ubredoxin (V8L) from Clostridium pasteurianum in the reduced state,reduction potential = -82 mV,251109,6678,1 12,6671,rubredoxin (V44A) from Clostridium pasteurianum in the oxidized state,reduction potential = -24 mV,251109,6678,1 13,6672,rubredoxin (V44A) from Clostridium pasteurianum in the reduced state,reduction potential = -24 mV,251109,6678,1 14,6673,rubredoxin (V44G) from Clostridium pasteurianum in the oxidized state,reduction potential = 0 mV,251109,6678,1 15,6674,rubredoxin (V44G) from Clostridium pasteurianum in the reduced state,reduction potential = 0 mV,251109,6678,1 16,6675,rubredoxin (V44I) from Clostridium pasteurianum in the oxidized state,reduction potential = -53 mV,251109,6678,1 17,6676,rubredoxin (V44I) from Clostridium pasteurianum in the reduced state,reduction potential = -53 mV,251109,6678,1 18,6677,rubredoxin (V44L) from Clostridium pasteurianum in the oxidized state,reduction potential = -87 mV,251109,6678,1 19,6678,rubredoxin (V44L) from Clostridium pasteurianum in the reduced state,reduction potential = -87 mV,251109,6678,1 1,6699,Assigned chemical shift entry,Backbone and Heavy Atom chemical shift assignments.,251554,6699,1 1,7117,Assigned chemical shift entry,"Near complete 1H, 13C, and 15N chemical shift assignments (missing M1,A2,G3,P20,P68 and aromatic sidechain resonances)",251676,6711,1 1,6787,assigned chemical shift entry,complete 13C 15N and 1H chemical shift assignments,253087,6787,1 ,6788,,,253103,6788,1 1,6791,Assigned chemical shift entry,Carbon and Hydrogen chemical shifts for AST8,253186,6791,1 2,6792,Assigned chemical shift entry,Carbon and Hydrogen chemical shifts for AST8,253186,6791,1 1,6828,backbone assignment of MazF(E24A),13C 15N and 1H chemical shift assignments for backbone of apo-MazF(E24A),253986,6833,1 ,6045,Assigned chemical shift entry,13C 15N and 1H chemical shift assignments,254173,6840,1 ,,chemical shift assignments,structural study of peptide derived from salivary lytic protein,254490,6859,1 ,pending,Assignments for two-zinc finger protein of Zap1,backbone and side chain resonance assignments for zinc fingers 1 and 2 of Zap1 from Saccharomyces cerevisiae. Three non-zinc-liganding cysteines were mutated to alanines in order to obtain a stable protein for NMR data collection.,255363,6905,1 ,pending,Assignments for finger 1 of Zap1,backbone resonance assignments for zinc finger 1 and a C-terminal disordered linker region of the Zap1 protein from Saccharomyces cerevisiae.,255363,6905,1 ,,Assigned chemical shift entry,Complete 13C 15N and 1H chemical shift assignments.,255578,6919,1 ,,,1H chemical shifts for discrepin,255652,6924,1 ,6925,Assigned chemical shift entry,13C 15N and 1H backbone and beta chemical shift assignments,255669,6925,1 1,4385,Assigned chemical shift entry,Backbone and side chain assignment,255929,6944,1 ,6947,Fur dimer,,255976,6947,1 ,6948,Fur monomer,,255976,6947,1 ,6947,Fur dimer,,255996,6948,1 ,6948,Fur monomer,,255996,6948,1 1,TFPP,Assigned chemical shift entry and NOE list of double 253 and 258 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of double 253 and 258 phosphorylated Tissue Factor Cytoplasmic Domain,256642,6991,1 1,TFSP253,Assigned chemical shift entry and NOE list of single 253 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of single 253 phosphorylated Tissue Factor Cytoplasmic Domain,256642,6991,1 1,TFSP258,Assigned chemical shift entry and NOE list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,256642,6991,1 1,TFPP,Assigned chemical shift entry and NOE list of un phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of unphosphorylated Tissue Factor Cytoplasmic Domain,256679,6993,1 1,TFSP253,Assigned chemical shift entry and NOE list of single 253 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of single 253 phosphorylated Tissue Factor Cytoplasmic Domain,256679,6993,1 1,TFSP258,Assigned chemical shift entry and NOE list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,256679,6993,1 1,TFCD,Assigned chemical shift entry and NOE list of un phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of unphosphorylated Tissue Factor Cytoplasmic Domain,256715,6996,1 1,TFPP,Assigned chemical shift entry and NOE list of double 253 and 258 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of double 253 and 258 phosphorylated Tissue Factor Cytoplasmic Domain,256715,6996,1 1,TFSP258,Assigned chemical shift entry and NOE list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,256715,6996,1 1,TFCD,Assigned chemical shift entry and NOE list of un phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of unphosphorylated Tissue Factor Cytoplasmic Domain,256750,6998,1 1,TFPP,Assigned chemical shift entry and NOE list of double 253 and 258 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of double 253 and 258 phosphorylated Tissue Factor Cytoplasmic Domain,256750,6998,1 1,TFSP258,Assigned chemical shift entry and NOE list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,Complete 1H chemical shift assignments and DYANA constraint list of single 258 phosphorylated Tissue Factor Cytoplasmic Domain,256750,6998,1 ,7071,Assigned chemical shift entry,13C 15N and 1H backbone and beta chemical shift assignments,257937,7071,1 ,7089,Assigned chemical shift entry,Virtually Complete 13C 15N and 1H chemical shift assignments,258298,7089,1 ,6960,,,258631,7110,1 1,6777,Assigned chemical shift entry,almost complete 13C 15N and 1H chemical shift assignments,259240,7151,1 1,,Assigned chemical shift entry,Complete 13C 15N and 1H chemical shift assignments.,259976,7202,1 ,1,Assigned chemical shift entry,"Backbone 1H, 15N and 13C chemical shift assignments",260797,7234,1 ,2,Assigned chemical shift entry,"Backbone 1H, 15N and 13C chemical shift assignments and 19F assignment for MgF3-",260797,7234,1 ,1,Assigned chemical shift entry,"Backbone 1H, 15N and 13C chemical shift assignments",260826,7235,1 ,2,Assigned chemical shift entry,"Backbone 1H, 15N and 13C chemical shift assignments and 19F assignment for MgF3-",260826,7235,1 ,6592,Chromo2 domain of cpSRP43,Chromo2 domain of cpSRP43,260959,7241,1 ,,Assigned chemical shift entry,"Complete 1H, 13C and 15N resonance assignments of Blo t 5, a major mite allergen from Blomia tropicalis.",261654,7276,1 ,7294,Assigned chemical shift entry,13C and 1H chemical shift assignments,262057,7295,1 1,9500,Assigned chemical shift entry,,264962,9500,1