path := $libdir/macro,. # ==== setting output and test-flag ==== output := gNhsqc_wide test_ft := n # test-ft for phasing with XEASY reduce_flag := n # reduce size for test-ft by factor of 2 np := 512 ni := 276 # ==== reading of data ==== read vnmr fid {$np}c {$ni}c byteswap # byteswap is needed on Linux write integer tmp readkay integer tmp {$np}c {$ni}c # gradsort for echo/anti-echo # ==== setting of parameters ==== #DIMENSION: 1 (1H) si(1) = 2048 # frequency domain size aqm(1) := RSHc # acquisition mode (ST/TP, TPPI, RSH) w0(1) = 750.5725085 # frequency delta(1) = 0.000095000 # increment in time domain ppmmax(1) = 11.769 # maximum ppm for calibration #DIMENSION: 2 (15N) si(2) = 1024 # frequency domain size aqm(2) := RSH # acquisition mode (ST/TP, TPPI, RSH) w0(2) = 76.0548503 # frequency delta(2) = 0.000144613 # increment in time domain ppmmax(2) = 163.427 # maximum ppm for calibration set n_dim= 2 window1 := "window sin 90" window2 := "window sin 90" ph0_d(1) = -77.3 ph1_d(1) = 0.0 ph0_d(2) = 90 ph1_d(2) = -180 # ==== processing ==== dim 1 phase 90 #suppress cos 64 # optional solvent suppression dim 2 phase 90 mul 1.0 1 # ==== ft ==== strip_ft 1 1..$si(1)/2 # FT and extract left half strip_ft 2 1..$si(2) if ('$test_ft'!='y') then dim 1 cflatt iterative polynom 5 dim 2 cflatt iterative polynom 5 end if dim 1 2 scale noise if ('$test_ft'=='y') then write easy16 $output.rr r r byteswap write easy16 $output.ri r i byteswap write easy16 $output.ir i r byteswap else write easy16 $output byteswap system echo 'Identifier for dimension w1 ... N15' >> $output.3D.param system echo 'Identifier for dimension w2 ... H1' >> $output.3D.param end if