============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 22:27:06 on 19-Jan-06 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_11.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_11_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/francis/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) = end SEGMNT: 173 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 2794(MAXA= 40000) NBOND= 2828(MAXB= 40000) -> NTHETA= 5113(MAXT= 80000) NGRP= 175(MAXGRP= 40000) -> NPHI= 4293(MAXP= 80000) NIMPHI= 1491(MAXIMP= 40000) -> NNB= 984(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER STRUCTURE FROM CYANA 2.1 14-JAN-06 1PDB COOR>EXPDTA NMR, 20 STRUCTURES COOR>REMARK model 11 COOR>ATOM 1 N GLY A 1 15.962 17.267 -35.907 1.00 71.44 %READC-ERR: atom 1 GLY H not found in molecular structure %READC-ERR: atom 1 GLY 2HA not found in molecular structure %READC-ERR: atom 1 GLY 3HA not found in molecular structure %READC-ERR: atom 2 HIS H not found in molecular structure %READC-ERR: atom 2 HIS 2HB not found in molecular structure %READC-ERR: atom 2 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS H not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS H not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS H not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS H not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS H not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 8 LEU H not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 GLU H not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 10 CYS H not found in molecular structure %READC-ERR: atom 10 CYS 2HB not found in molecular structure %READC-ERR: atom 10 CYS 3HB not found in molecular structure %READC-ERR: atom 11 SER H not found in molecular structure %READC-ERR: atom 11 SER 2HB not found in molecular structure %READC-ERR: atom 11 SER 3HB not found in molecular structure %READC-ERR: atom 12 SER H not found in molecular structure %READC-ERR: atom 12 SER 2HB not found in molecular structure %READC-ERR: atom 12 SER 3HB not found in molecular structure %READC-ERR: atom 13 ASP H not found in molecular structure %READC-ERR: atom 13 ASP 2HB not found in molecular structure %READC-ERR: atom 13 ASP 3HB not found in molecular structure %READC-ERR: atom 14 SER H not found in molecular structure %READC-ERR: atom 14 SER 2HB not found in molecular structure %READC-ERR: atom 14 SER 3HB not found in molecular structure %READC-ERR: atom 15 LEU H not found in molecular structure %READC-ERR: atom 15 LEU 2HB not found in molecular structure %READC-ERR: atom 15 LEU 3HB not found in molecular structure %READC-ERR: atom 15 LEU 1HD1 not found in molecular structure %READC-ERR: atom 15 LEU 2HD1 not found in molecular structure %READC-ERR: atom 15 LEU 3HD1 not found in molecular structure %READC-ERR: atom 15 LEU 1HD2 not found in molecular structure %READC-ERR: atom 15 LEU 2HD2 not found in molecular structure %READC-ERR: atom 15 LEU 3HD2 not found in molecular structure %READC-ERR: atom 16 GLN H not found in molecular structure %READC-ERR: atom 16 GLN 2HB not found in molecular structure %READC-ERR: atom 16 GLN 3HB not found in molecular structure %READC-ERR: atom 16 GLN 2HG not found in molecular structure %READC-ERR: atom 16 GLN 3HG not found in molecular structure %READC-ERR: atom 16 GLN 1HE2 not found in molecular structure %READC-ERR: atom 16 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 LEU H not found in molecular structure %READC-ERR: atom 17 LEU 2HB not found in molecular structure %READC-ERR: atom 17 LEU 3HB not found in molecular structure %READC-ERR: atom 17 LEU 1HD1 not found in molecular structure %READC-ERR: atom 17 LEU 2HD1 not found in molecular structure %READC-ERR: atom 17 LEU 3HD1 not found in molecular structure %READC-ERR: atom 17 LEU 1HD2 not found in molecular structure %READC-ERR: atom 17 LEU 2HD2 not found in molecular structure %READC-ERR: atom 17 LEU 3HD2 not found in molecular structure %READC-ERR: atom 18 HIS H not found in molecular structure %READC-ERR: atom 18 HIS 2HB not found in molecular structure %READC-ERR: atom 18 HIS 3HB not found in molecular structure %READC-ERR: atom 19 ASN H not found in molecular structure %READC-ERR: atom 19 ASN 2HB not found in molecular structure %READC-ERR: atom 19 ASN 3HB not found in molecular structure %READC-ERR: atom 19 ASN 1HD2 not found in molecular structure %READC-ERR: atom 19 ASN 2HD2 not found in molecular structure %READC-ERR: atom 20 VAL H not found in molecular structure %READC-ERR: atom 20 VAL 1HG1 not found in molecular structure %READC-ERR: atom 20 VAL 2HG1 not found in molecular structure %READC-ERR: atom 20 VAL 3HG1 not found in molecular structure %READC-ERR: atom 20 VAL 1HG2 not found in molecular structure %READC-ERR: atom 20 VAL 2HG2 not found in molecular structure %READC-ERR: atom 20 VAL 3HG2 not found in molecular structure %READC-ERR: atom 21 PHE H not found in molecular structure %READC-ERR: atom 21 PHE 2HB not found in molecular structure %READC-ERR: atom 21 PHE 3HB not found in molecular structure %READC-ERR: atom 22 VAL H not found in molecular structure %READC-ERR: atom 22 VAL 1HG1 not found in molecular structure %READC-ERR: atom 22 VAL 2HG1 not found in molecular structure %READC-ERR: atom 22 VAL 3HG1 not found in molecular structure %READC-ERR: atom 22 VAL 1HG2 not found in molecular structure %READC-ERR: atom 22 VAL 2HG2 not found in molecular structure %READC-ERR: atom 22 VAL 3HG2 not found in molecular structure %READC-ERR: atom 23 TYR H not found in molecular structure %READC-ERR: atom 23 TYR 2HB not found in molecular structure %READC-ERR: atom 23 TYR 3HB not found in molecular structure %READC-ERR: atom 24 GLY H not found in molecular structure %READC-ERR: atom 24 GLY 2HA not found in molecular structure %READC-ERR: atom 24 GLY 3HA not found in molecular structure %READC-ERR: atom 25 SER H not found in molecular structure %READC-ERR: atom 25 SER 2HB not found in molecular structure %READC-ERR: atom 25 SER 3HB not found in molecular structure %READC-ERR: atom 26 PHE H not found in molecular structure %READC-ERR: atom 26 PHE 2HB not found in molecular structure %READC-ERR: atom 26 PHE 3HB not found in molecular structure %READC-ERR: atom 27 GLN H not found in molecular structure %READC-ERR: atom 27 GLN 2HB not found in molecular structure %READC-ERR: atom 27 GLN 3HB not found in molecular structure %READC-ERR: atom 27 GLN 2HG not found in molecular structure %READC-ERR: atom 27 GLN 3HG not found in molecular structure %READC-ERR: atom 27 GLN 1HE2 not found in molecular structure %READC-ERR: atom 27 GLN 2HE2 not found in molecular structure %READC-ERR: atom 28 ASP H not found in molecular structure %READC-ERR: atom 28 ASP 2HB not found in molecular structure %READC-ERR: atom 28 ASP 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HB not found in molecular structure %READC-ERR: atom 29 PRO 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HG not found in molecular structure %READC-ERR: atom 29 PRO 3HG not found in molecular structure %READC-ERR: atom 29 PRO 2HD not found in molecular structure %READC-ERR: atom 29 PRO 3HD not found in molecular structure %READC-ERR: atom 30 ASP H not found in molecular structure %READC-ERR: atom 30 ASP 2HB not found in molecular structure %READC-ERR: atom 30 ASP 3HB not found in molecular structure %READC-ERR: atom 31 VAL H not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE H not found in molecular structure %READC-ERR: atom 32 ILE 1HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG2 not found in molecular structure %READC-ERR: atom 32 ILE 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG1 not found in molecular structure %READC-ERR: atom 32 ILE 3HG1 not found in molecular structure %READC-ERR: atom 32 ILE 1HD1 not found in molecular structure %READC-ERR: atom 32 ILE 2HD1 not found in molecular structure %READC-ERR: atom 32 ILE 3HD1 not found in molecular structure %READC-ERR: atom 33 ASN H not found in molecular structure %READC-ERR: atom 33 ASN 2HB not found in molecular structure %READC-ERR: atom 33 ASN 3HB not found in molecular structure %READC-ERR: atom 33 ASN 1HD2 not found in molecular structure %READC-ERR: atom 33 ASN 2HD2 not found in molecular structure %READC-ERR: atom 34 VAL H not found in molecular structure %READC-ERR: atom 34 VAL 1HG1 not found in molecular structure %READC-ERR: atom 34 VAL 2HG1 not found in molecular structure %READC-ERR: atom 34 VAL 3HG1 not found in molecular structure %READC-ERR: atom 34 VAL 1HG2 not found in molecular structure %READC-ERR: atom 34 VAL 2HG2 not found in molecular structure %READC-ERR: atom 34 VAL 3HG2 not found in molecular structure %READC-ERR: atom 35 MET H not found in molecular structure %READC-ERR: atom 35 MET 2HB not found in molecular structure %READC-ERR: atom 35 MET 3HB not found in molecular structure %READC-ERR: atom 35 MET 2HG not found in molecular structure %READC-ERR: atom 35 MET 3HG not found in molecular structure %READC-ERR: atom 35 MET 1HE not found in molecular structure %READC-ERR: atom 35 MET 2HE not found in molecular structure %READC-ERR: atom 35 MET 3HE not found in molecular structure %READC-ERR: atom 36 LEU H not found in molecular structure %READC-ERR: atom 36 LEU 2HB not found in molecular structure %READC-ERR: atom 36 LEU 3HB not found in molecular structure %READC-ERR: atom 36 LEU 1HD1 not found in molecular structure %READC-ERR: atom 36 LEU 2HD1 not found in molecular structure %READC-ERR: atom 36 LEU 3HD1 not found in molecular structure %READC-ERR: atom 36 LEU 1HD2 not found in molecular structure %READC-ERR: atom 36 LEU 2HD2 not found in molecular structure %READC-ERR: atom 36 LEU 3HD2 not found in molecular structure %READC-ERR: atom 37 ASP H not found in molecular structure %READC-ERR: atom 37 ASP 2HB not found in molecular structure %READC-ERR: atom 37 ASP 3HB not found in molecular structure %READC-ERR: atom 38 ARG H not found in molecular structure %READC-ERR: atom 38 ARG 2HB not found in molecular structure %READC-ERR: atom 38 ARG 3HB not found in molecular structure %READC-ERR: atom 38 ARG 2HG not found in molecular structure %READC-ERR: atom 38 ARG 3HG not found in molecular structure %READC-ERR: atom 38 ARG 2HD not found in molecular structure %READC-ERR: atom 38 ARG 3HD not found in molecular structure %READC-ERR: atom 38 ARG 1HH1 not found in molecular structure %READC-ERR: atom 38 ARG 2HH1 not found in molecular structure %READC-ERR: atom 38 ARG 1HH2 not found in molecular structure %READC-ERR: atom 38 ARG 2HH2 not found in molecular structure %READC-ERR: atom 39 THR H not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 PRO 2HB not found in molecular structure %READC-ERR: atom 40 PRO 3HB not found in molecular structure %READC-ERR: atom 40 PRO 2HG not found in molecular structure %READC-ERR: atom 40 PRO 3HG not found in molecular structure %READC-ERR: atom 40 PRO 2HD not found in molecular structure %READC-ERR: atom 40 PRO 3HD not found in molecular structure %READC-ERR: atom 41 GLU H not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 42 ILE H not found in molecular structure %READC-ERR: atom 42 ILE 1HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG2 not found in molecular structure %READC-ERR: atom 42 ILE 3HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG1 not found in molecular structure %READC-ERR: atom 42 ILE 3HG1 not found in molecular structure %READC-ERR: atom 42 ILE 1HD1 not found in molecular structure %READC-ERR: atom 42 ILE 2HD1 not found in molecular structure %READC-ERR: atom 42 ILE 3HD1 not found in molecular structure %READC-ERR: atom 43 VAL H not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 44 SER H not found in molecular structure %READC-ERR: atom 44 SER 2HB not found in molecular structure %READC-ERR: atom 44 SER 3HB not found in molecular structure %READC-ERR: atom 45 ALA H not found in molecular structure %READC-ERR: atom 45 ALA 1HB not found in molecular structure %READC-ERR: atom 45 ALA 2HB not found in molecular structure %READC-ERR: atom 45 ALA 3HB not found in molecular structure %READC-ERR: atom 46 THR H not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 LEU H not found in molecular structure %READC-ERR: atom 47 LEU 2HB not found in molecular structure %READC-ERR: atom 47 LEU 3HB not found in molecular structure %READC-ERR: atom 47 LEU 1HD1 not found in molecular structure %READC-ERR: atom 47 LEU 2HD1 not found in molecular structure %READC-ERR: atom 47 LEU 3HD1 not found in molecular structure %READC-ERR: atom 47 LEU 1HD2 not found in molecular structure %READC-ERR: atom 47 LEU 2HD2 not found in molecular structure %READC-ERR: atom 47 LEU 3HD2 not found in molecular structure %READC-ERR: atom 48 PRO 2HB not found in molecular structure %READC-ERR: atom 48 PRO 3HB not found in molecular structure %READC-ERR: atom 48 PRO 2HG not found in molecular structure %READC-ERR: atom 48 PRO 3HG not found in molecular structure %READC-ERR: atom 48 PRO 2HD not found in molecular structure %READC-ERR: atom 48 PRO 3HD not found in molecular structure %READC-ERR: atom 49 GLY H not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY 3HA not found in molecular structure %READC-ERR: atom 50 PHE H not found in molecular structure %READC-ERR: atom 50 PHE 2HB not found in molecular structure %READC-ERR: atom 50 PHE 3HB not found in molecular structure %READC-ERR: atom 51 GLN H not found in molecular structure %READC-ERR: atom 51 GLN 2HB not found in molecular structure %READC-ERR: atom 51 GLN 3HB not found in molecular structure %READC-ERR: atom 51 GLN 2HG not found in molecular structure %READC-ERR: atom 51 GLN 3HG not found in molecular structure %READC-ERR: atom 51 GLN 1HE2 not found in molecular structure %READC-ERR: atom 51 GLN 2HE2 not found in molecular structure %READC-ERR: atom 52 ARG H not found in molecular structure %READC-ERR: atom 52 ARG 2HB not found in molecular structure %READC-ERR: atom 52 ARG 3HB not found in molecular structure %READC-ERR: atom 52 ARG 2HG not found in molecular structure %READC-ERR: atom 52 ARG 3HG not found in molecular structure %READC-ERR: atom 52 ARG 2HD not found in molecular structure %READC-ERR: atom 52 ARG 3HD not found in molecular structure %READC-ERR: atom 52 ARG 1HH1 not found in molecular structure %READC-ERR: atom 52 ARG 2HH1 not found in molecular structure %READC-ERR: atom 52 ARG 1HH2 not found in molecular structure %READC-ERR: atom 52 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 PHE H not found in molecular structure %READC-ERR: atom 53 PHE 2HB not found in molecular structure %READC-ERR: atom 53 PHE 3HB not found in molecular structure %READC-ERR: atom 54 ARG H not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 55 LEU H not found in molecular structure %READC-ERR: atom 55 LEU 2HB not found in molecular structure %READC-ERR: atom 55 LEU 3HB not found in molecular structure %READC-ERR: atom 55 LEU 1HD1 not found in molecular structure %READC-ERR: atom 55 LEU 2HD1 not found in molecular structure %READC-ERR: atom 55 LEU 3HD1 not found in molecular structure %READC-ERR: atom 55 LEU 1HD2 not found in molecular structure %READC-ERR: atom 55 LEU 2HD2 not found in molecular structure %READC-ERR: atom 55 LEU 3HD2 not found in molecular structure %READC-ERR: atom 56 LYS H not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 GLY H not found in molecular structure %READC-ERR: atom 57 GLY 2HA not found in molecular structure %READC-ERR: atom 57 GLY 3HA not found in molecular structure %READC-ERR: atom 58 ARG H not found in molecular structure %READC-ERR: atom 58 ARG 2HB not found in molecular structure %READC-ERR: atom 58 ARG 3HB not found in molecular structure %READC-ERR: atom 58 ARG 2HG not found in molecular structure %READC-ERR: atom 58 ARG 3HG not found in molecular structure %READC-ERR: atom 58 ARG 2HD not found in molecular structure %READC-ERR: atom 58 ARG 3HD not found in molecular structure %READC-ERR: atom 58 ARG 1HH1 not found in molecular structure %READC-ERR: atom 58 ARG 2HH1 not found in molecular structure %READC-ERR: atom 58 ARG 1HH2 not found in molecular structure %READC-ERR: atom 58 ARG 2HH2 not found in molecular structure %READC-ERR: atom 59 LEU H not found in molecular structure %READC-ERR: atom 59 LEU 2HB not found in molecular structure %READC-ERR: atom 59 LEU 3HB not found in molecular structure %READC-ERR: atom 59 LEU 1HD1 not found in molecular structure %READC-ERR: atom 59 LEU 2HD1 not found in molecular structure %READC-ERR: atom 59 LEU 3HD1 not found in molecular structure %READC-ERR: atom 59 LEU 1HD2 not found in molecular structure %READC-ERR: atom 59 LEU 2HD2 not found in molecular structure %READC-ERR: atom 59 LEU 3HD2 not found in molecular structure %READC-ERR: atom 60 TYR H not found in molecular structure %READC-ERR: atom 60 TYR 2HB not found in molecular structure %READC-ERR: atom 60 TYR 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HB not found in molecular structure %READC-ERR: atom 61 PRO 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HG not found in molecular structure %READC-ERR: atom 61 PRO 3HG not found in molecular structure %READC-ERR: atom 61 PRO 2HD not found in molecular structure %READC-ERR: atom 61 PRO 3HD not found in molecular structure %READC-ERR: atom 62 CYS H not found in molecular structure %READC-ERR: atom 62 CYS 2HB not found in molecular structure %READC-ERR: atom 62 CYS 3HB not found in molecular structure %READC-ERR: atom 63 ILE H not found in molecular structure %READC-ERR: atom 63 ILE 1HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG2 not found in molecular structure %READC-ERR: atom 63 ILE 3HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG1 not found in molecular structure %READC-ERR: atom 63 ILE 3HG1 not found in molecular structure %READC-ERR: atom 63 ILE 1HD1 not found in molecular structure %READC-ERR: atom 63 ILE 2HD1 not found in molecular structure %READC-ERR: atom 63 ILE 3HD1 not found in molecular structure %READC-ERR: atom 64 VAL H not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 PRO 2HB not found in molecular structure %READC-ERR: atom 65 PRO 3HB not found in molecular structure %READC-ERR: atom 65 PRO 2HG not found in molecular structure %READC-ERR: atom 65 PRO 3HG not found in molecular structure %READC-ERR: atom 65 PRO 2HD not found in molecular structure %READC-ERR: atom 65 PRO 3HD not found in molecular structure %READC-ERR: atom 66 SER H not found in molecular structure %READC-ERR: atom 66 SER 2HB not found in molecular structure %READC-ERR: atom 66 SER 3HB not found in molecular structure %READC-ERR: atom 67 GLU H not found in molecular structure %READC-ERR: atom 67 GLU 2HB not found in molecular structure %READC-ERR: atom 67 GLU 3HB not found in molecular structure %READC-ERR: atom 67 GLU 2HG not found in molecular structure %READC-ERR: atom 67 GLU 3HG not found in molecular structure %READC-ERR: atom 68 LYS H not found in molecular structure %READC-ERR: atom 68 LYS 2HB not found in molecular structure %READC-ERR: atom 68 LYS 3HB not found in molecular structure %READC-ERR: atom 68 LYS 2HG not found in molecular structure %READC-ERR: atom 68 LYS 3HG not found in molecular structure %READC-ERR: atom 68 LYS 2HD not found in molecular structure %READC-ERR: atom 68 LYS 3HD not found in molecular structure %READC-ERR: atom 68 LYS 2HE not found in molecular structure %READC-ERR: atom 68 LYS 3HE not found in molecular structure %READC-ERR: atom 68 LYS 1HZ not found in molecular structure %READC-ERR: atom 68 LYS 2HZ not found in molecular structure %READC-ERR: atom 68 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 GLY H not found in molecular structure %READC-ERR: atom 69 GLY 2HA not found in molecular structure %READC-ERR: atom 69 GLY 3HA not found in molecular structure %READC-ERR: atom 70 GLU H not found in molecular structure %READC-ERR: atom 70 GLU 2HB not found in molecular structure %READC-ERR: atom 70 GLU 3HB not found in molecular structure %READC-ERR: atom 70 GLU 2HG not found in molecular structure %READC-ERR: atom 70 GLU 3HG not found in molecular structure %READC-ERR: atom 71 VAL H not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 72 HIS H not found in molecular structure %READC-ERR: atom 72 HIS 2HB not found in molecular structure %READC-ERR: atom 72 HIS 3HB not found in molecular structure %READC-ERR: atom 73 GLY H not found in molecular structure %READC-ERR: atom 73 GLY 2HA not found in molecular structure %READC-ERR: atom 73 GLY 3HA not found in molecular structure %READC-ERR: atom 74 LYS H not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 75 VAL H not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 76 LEU H not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 77 MET H not found in molecular structure %READC-ERR: atom 77 MET 2HB not found in molecular structure %READC-ERR: atom 77 MET 3HB not found in molecular structure %READC-ERR: atom 77 MET 2HG not found in molecular structure %READC-ERR: atom 77 MET 3HG not found in molecular structure %READC-ERR: atom 77 MET 1HE not found in molecular structure %READC-ERR: atom 77 MET 2HE not found in molecular structure %READC-ERR: atom 77 MET 3HE not found in molecular structure %READC-ERR: atom 78 GLY H not found in molecular structure %READC-ERR: atom 78 GLY 2HA not found in molecular structure %READC-ERR: atom 78 GLY 3HA not found in molecular structure %READC-ERR: atom 79 VAL H not found in molecular structure %READC-ERR: atom 79 VAL 1HG1 not found in molecular structure %READC-ERR: atom 79 VAL 2HG1 not found in molecular structure %READC-ERR: atom 79 VAL 3HG1 not found in molecular structure %READC-ERR: atom 79 VAL 1HG2 not found in molecular structure %READC-ERR: atom 79 VAL 2HG2 not found in molecular structure %READC-ERR: atom 79 VAL 3HG2 not found in molecular structure %READC-ERR: atom 80 THR H not found in molecular structure %READC-ERR: atom 80 THR 1HG2 not found in molecular structure %READC-ERR: atom 80 THR 2HG2 not found in molecular structure %READC-ERR: atom 80 THR 3HG2 not found in molecular structure %READC-ERR: atom 81 SER H not found in molecular structure %READC-ERR: atom 81 SER 2HB not found in molecular structure %READC-ERR: atom 81 SER 3HB not found in molecular structure %READC-ERR: atom 82 ASP H not found in molecular structure %READC-ERR: atom 82 ASP 2HB not found in molecular structure %READC-ERR: atom 82 ASP 3HB not found in molecular structure %READC-ERR: atom 83 GLU H not found in molecular structure %READC-ERR: atom 83 GLU 2HB not found in molecular structure %READC-ERR: atom 83 GLU 3HB not found in molecular structure %READC-ERR: atom 83 GLU 2HG not found in molecular structure %READC-ERR: atom 83 GLU 3HG not found in molecular structure %READC-ERR: atom 84 LEU H not found in molecular structure %READC-ERR: atom 84 LEU 2HB not found in molecular structure %READC-ERR: atom 84 LEU 3HB not found in molecular structure %READC-ERR: atom 84 LEU 1HD1 not found in molecular structure %READC-ERR: atom 84 LEU 2HD1 not found in molecular structure %READC-ERR: atom 84 LEU 3HD1 not found in molecular structure %READC-ERR: atom 84 LEU 1HD2 not found in molecular structure %READC-ERR: atom 84 LEU 2HD2 not found in molecular structure %READC-ERR: atom 84 LEU 3HD2 not found in molecular structure %READC-ERR: atom 85 GLU H not found in molecular structure %READC-ERR: atom 85 GLU 2HB not found in molecular structure %READC-ERR: atom 85 GLU 3HB not found in molecular structure %READC-ERR: atom 85 GLU 2HG not found in molecular structure %READC-ERR: atom 85 GLU 3HG not found in molecular structure %READC-ERR: atom 86 ASN H not found in molecular structure %READC-ERR: atom 86 ASN 2HB not found in molecular structure %READC-ERR: atom 86 ASN 3HB not found in molecular structure %READC-ERR: atom 86 ASN 1HD2 not found in molecular structure %READC-ERR: atom 86 ASN 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU H not found in molecular structure %READC-ERR: atom 87 LEU 2HB not found in molecular structure %READC-ERR: atom 87 LEU 3HB not found in molecular structure %READC-ERR: atom 87 LEU 1HD1 not found in molecular structure %READC-ERR: atom 87 LEU 2HD1 not found in molecular structure %READC-ERR: atom 87 LEU 3HD1 not found in molecular structure %READC-ERR: atom 87 LEU 1HD2 not found in molecular structure %READC-ERR: atom 87 LEU 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU 3HD2 not found in molecular structure %READC-ERR: atom 88 ASP H not found in molecular structure %READC-ERR: atom 88 ASP 2HB not found in molecular structure %READC-ERR: atom 88 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ALA H not found in molecular structure %READC-ERR: atom 89 ALA 1HB not found in molecular structure %READC-ERR: atom 89 ALA 2HB not found in molecular structure %READC-ERR: atom 89 ALA 3HB not found in molecular structure %READC-ERR: atom 90 VAL H not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 91 GLU H not found in molecular structure %READC-ERR: atom 91 GLU 2HB not found in molecular structure %READC-ERR: atom 91 GLU 3HB not found in molecular structure %READC-ERR: atom 91 GLU 2HG not found in molecular structure %READC-ERR: atom 91 GLU 3HG not found in molecular structure %READC-ERR: atom 92 GLY H not found in molecular structure %READC-ERR: atom 92 GLY 2HA not found in molecular structure %READC-ERR: atom 92 GLY 3HA not found in molecular structure %READC-ERR: atom 93 ASN H not found in molecular structure %READC-ERR: atom 93 ASN 2HB not found in molecular structure %READC-ERR: atom 93 ASN 3HB not found in molecular structure %READC-ERR: atom 93 ASN 1HD2 not found in molecular structure %READC-ERR: atom 93 ASN 2HD2 not found in molecular structure %READC-ERR: atom 94 GLU H not found in molecular structure %READC-ERR: atom 94 GLU 2HB not found in molecular structure %READC-ERR: atom 94 GLU 3HB not found in molecular structure %READC-ERR: atom 94 GLU 2HG not found in molecular structure %READC-ERR: atom 94 GLU 3HG not found in molecular structure %READC-ERR: atom 95 TYR H not found in molecular structure %READC-ERR: atom 95 TYR 2HB not found in molecular structure %READC-ERR: atom 95 TYR 3HB not found in molecular structure %READC-ERR: atom 96 GLU H not found in molecular structure %READC-ERR: atom 96 GLU 2HB not found in molecular structure %READC-ERR: atom 96 GLU 3HB not found in molecular structure %READC-ERR: atom 96 GLU 2HG not found in molecular structure %READC-ERR: atom 96 GLU 3HG not found in molecular structure %READC-ERR: atom 97 ARG H not found in molecular structure %READC-ERR: atom 97 ARG 2HB not found in molecular structure %READC-ERR: atom 97 ARG 3HB not found in molecular structure %READC-ERR: atom 97 ARG 2HG not found in molecular structure %READC-ERR: atom 97 ARG 3HG not found in molecular structure %READC-ERR: atom 97 ARG 2HD not found in molecular structure %READC-ERR: atom 97 ARG 3HD not found in molecular structure %READC-ERR: atom 97 ARG 1HH1 not found in molecular structure %READC-ERR: atom 97 ARG 2HH1 not found in molecular structure %READC-ERR: atom 97 ARG 1HH2 not found in molecular structure %READC-ERR: atom 97 ARG 2HH2 not found in molecular structure %READC-ERR: atom 98 VAL H not found in molecular structure %READC-ERR: atom 98 VAL 1HG1 not found in molecular structure %READC-ERR: atom 98 VAL 2HG1 not found in molecular structure %READC-ERR: atom 98 VAL 3HG1 not found in molecular structure %READC-ERR: atom 98 VAL 1HG2 not found in molecular structure %READC-ERR: atom 98 VAL 2HG2 not found in molecular structure %READC-ERR: atom 98 VAL 3HG2 not found in molecular structure %READC-ERR: atom 99 THR H not found in molecular structure %READC-ERR: atom 99 THR 1HG2 not found in molecular structure %READC-ERR: atom 99 THR 2HG2 not found in molecular structure %READC-ERR: atom 99 THR 3HG2 not found in molecular structure %READC-ERR: atom 100 VAL H not found in molecular structure %READC-ERR: atom 100 VAL 1HG1 not found in molecular structure %READC-ERR: atom 100 VAL 2HG1 not found in molecular structure %READC-ERR: atom 100 VAL 3HG1 not found in molecular structure %READC-ERR: atom 100 VAL 1HG2 not found in molecular structure %READC-ERR: atom 100 VAL 2HG2 not found in molecular structure %READC-ERR: atom 100 VAL 3HG2 not found in molecular structure %READC-ERR: atom 101 GLY H not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY 3HA not found in molecular structure %READC-ERR: atom 102 ILE H not found in molecular structure %READC-ERR: atom 102 ILE 1HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG2 not found in molecular structure %READC-ERR: atom 102 ILE 3HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG1 not found in molecular structure %READC-ERR: atom 102 ILE 3HG1 not found in molecular structure %READC-ERR: atom 102 ILE 1HD1 not found in molecular structure %READC-ERR: atom 102 ILE 2HD1 not found in molecular structure %READC-ERR: atom 102 ILE 3HD1 not found in molecular structure %READC-ERR: atom 103 VAL H not found in molecular structure %READC-ERR: atom 103 VAL 1HG1 not found in molecular structure %READC-ERR: atom 103 VAL 2HG1 not found in molecular structure %READC-ERR: atom 103 VAL 3HG1 not found in molecular structure %READC-ERR: atom 103 VAL 1HG2 not found in molecular structure %READC-ERR: atom 103 VAL 2HG2 not found in molecular structure %READC-ERR: atom 103 VAL 3HG2 not found in molecular structure %READC-ERR: atom 104 ARG H not found in molecular structure %READC-ERR: atom 104 ARG 2HB not found in molecular structure %READC-ERR: atom 104 ARG 3HB not found in molecular structure %READC-ERR: atom 104 ARG 2HG not found in molecular structure %READC-ERR: atom 104 ARG 3HG not found in molecular structure %READC-ERR: atom 104 ARG 2HD not found in molecular structure %READC-ERR: atom 104 ARG 3HD not found in molecular structure %READC-ERR: atom 104 ARG 1HH1 not found in molecular structure %READC-ERR: atom 104 ARG 2HH1 not found in molecular structure %READC-ERR: atom 104 ARG 1HH2 not found in molecular structure %READC-ERR: atom 104 ARG 2HH2 not found in molecular structure %READC-ERR: atom 105 GLU H not found in molecular structure %READC-ERR: atom 105 GLU 2HB not found in molecular structure %READC-ERR: atom 105 GLU 3HB not found in molecular structure %READC-ERR: atom 105 GLU 2HG not found in molecular structure %READC-ERR: atom 105 GLU 3HG not found in molecular structure %READC-ERR: atom 106 ASP H not found in molecular structure %READC-ERR: atom 106 ASP 2HB not found in molecular structure %READC-ERR: atom 106 ASP 3HB not found in molecular structure %READC-ERR: atom 107 ASN H not found in molecular structure %READC-ERR: atom 107 ASN 2HB not found in molecular structure %READC-ERR: atom 107 ASN 3HB not found in molecular structure %READC-ERR: atom 107 ASN 1HD2 not found in molecular structure %READC-ERR: atom 107 ASN 2HD2 not found in molecular structure %READC-ERR: atom 108 SER H not found in molecular structure %READC-ERR: atom 108 SER 2HB not found in molecular structure %READC-ERR: atom 108 SER 3HB not found in molecular structure %READC-ERR: atom 109 GLU H not found in molecular structure %READC-ERR: atom 109 GLU 2HB not found in molecular structure %READC-ERR: atom 109 GLU 3HB not found in molecular structure %READC-ERR: atom 109 GLU 2HG not found in molecular structure %READC-ERR: atom 109 GLU 3HG not found in molecular structure %READC-ERR: atom 110 LYS H not found in molecular structure %READC-ERR: atom 110 LYS 2HB not found in molecular structure %READC-ERR: atom 110 LYS 3HB not found in molecular structure %READC-ERR: atom 110 LYS 2HG not found in molecular structure %READC-ERR: atom 110 LYS 3HG not found in molecular structure %READC-ERR: atom 110 LYS 2HD not found in molecular structure %READC-ERR: atom 110 LYS 3HD not found in molecular structure %READC-ERR: atom 110 LYS 2HE not found in molecular structure %READC-ERR: atom 110 LYS 3HE not found in molecular structure %READC-ERR: atom 110 LYS 1HZ not found in molecular structure %READC-ERR: atom 110 LYS 2HZ not found in molecular structure %READC-ERR: atom 110 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 MET H not found in molecular structure %READC-ERR: atom 111 MET 2HB not found in molecular structure %READC-ERR: atom 111 MET 3HB not found in molecular structure %READC-ERR: atom 111 MET 2HG not found in molecular structure %READC-ERR: atom 111 MET 3HG not found in molecular structure %READC-ERR: atom 111 MET 1HE not found in molecular structure %READC-ERR: atom 111 MET 2HE not found in molecular structure %READC-ERR: atom 111 MET 3HE not found in molecular structure %READC-ERR: atom 112 ALA H not found in molecular structure %READC-ERR: atom 112 ALA 1HB not found in molecular structure %READC-ERR: atom 112 ALA 2HB not found in molecular structure %READC-ERR: atom 112 ALA 3HB not found in molecular structure %READC-ERR: atom 113 VAL H not found in molecular structure %READC-ERR: atom 113 VAL 1HG1 not found in molecular structure %READC-ERR: atom 113 VAL 2HG1 not found in molecular structure %READC-ERR: atom 113 VAL 3HG1 not found in molecular structure %READC-ERR: atom 113 VAL 1HG2 not found in molecular structure %READC-ERR: atom 113 VAL 2HG2 not found in molecular structure %READC-ERR: atom 113 VAL 3HG2 not found in molecular structure %READC-ERR: atom 114 LYS H not found in molecular structure %READC-ERR: atom 114 LYS 2HB not found in molecular structure %READC-ERR: atom 114 LYS 3HB not found in molecular structure %READC-ERR: atom 114 LYS 2HG not found in molecular structure %READC-ERR: atom 114 LYS 3HG not found in molecular structure %READC-ERR: atom 114 LYS 2HD not found in molecular structure %READC-ERR: atom 114 LYS 3HD not found in molecular structure %READC-ERR: atom 114 LYS 2HE not found in molecular structure %READC-ERR: atom 114 LYS 3HE not found in molecular structure %READC-ERR: atom 114 LYS 1HZ not found in molecular structure %READC-ERR: atom 114 LYS 2HZ not found in molecular structure %READC-ERR: atom 114 LYS 3HZ not found in molecular structure %READC-ERR: atom 115 THR H not found in molecular structure %READC-ERR: atom 115 THR 1HG2 not found in molecular structure %READC-ERR: atom 115 THR 2HG2 not found in molecular structure %READC-ERR: atom 115 THR 3HG2 not found in molecular structure %READC-ERR: atom 116 TYR H not found in molecular structure %READC-ERR: atom 116 TYR 2HB not found in molecular structure %READC-ERR: atom 116 TYR 3HB not found in molecular structure %READC-ERR: atom 117 MET H not found in molecular structure %READC-ERR: atom 117 MET 2HB not found in molecular structure %READC-ERR: atom 117 MET 3HB not found in molecular structure %READC-ERR: atom 117 MET 2HG not found in molecular structure %READC-ERR: atom 117 MET 3HG not found in molecular structure %READC-ERR: atom 117 MET 1HE not found in molecular structure %READC-ERR: atom 117 MET 2HE not found in molecular structure %READC-ERR: atom 117 MET 3HE not found in molecular structure %READC-ERR: atom 118 TRP H not found in molecular structure %READC-ERR: atom 118 TRP 2HB not found in molecular structure %READC-ERR: atom 118 TRP 3HB not found in molecular structure %READC-ERR: atom 119 ILE H not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ASN H not found in molecular structure %READC-ERR: atom 120 ASN 2HB not found in molecular structure %READC-ERR: atom 120 ASN 3HB not found in molecular structure %READC-ERR: atom 120 ASN 1HD2 not found in molecular structure %READC-ERR: atom 120 ASN 2HD2 not found in molecular structure %READC-ERR: atom 121 LYS H not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 122 ALA H not found in molecular structure %READC-ERR: atom 122 ALA 1HB not found in molecular structure %READC-ERR: atom 122 ALA 2HB not found in molecular structure %READC-ERR: atom 122 ALA 3HB not found in molecular structure %READC-ERR: atom 123 ASP H not found in molecular structure %READC-ERR: atom 123 ASP 2HB not found in molecular structure %READC-ERR: atom 123 ASP 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HB not found in molecular structure %READC-ERR: atom 124 PRO 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HG not found in molecular structure %READC-ERR: atom 124 PRO 3HG not found in molecular structure %READC-ERR: atom 124 PRO 2HD not found in molecular structure %READC-ERR: atom 124 PRO 3HD not found in molecular structure %READC-ERR: atom 125 ASP H not found in molecular structure %READC-ERR: atom 125 ASP 2HB not found in molecular structure %READC-ERR: atom 125 ASP 3HB not found in molecular structure %READC-ERR: atom 126 MET H not found in molecular structure %READC-ERR: atom 126 MET 2HB not found in molecular structure %READC-ERR: atom 126 MET 3HB not found in molecular structure %READC-ERR: atom 126 MET 2HG not found in molecular structure %READC-ERR: atom 126 MET 3HG not found in molecular structure %READC-ERR: atom 126 MET 1HE not found in molecular structure %READC-ERR: atom 126 MET 2HE not found in molecular structure %READC-ERR: atom 126 MET 3HE not found in molecular structure %READC-ERR: atom 127 PHE H not found in molecular structure %READC-ERR: atom 127 PHE 2HB not found in molecular structure %READC-ERR: atom 127 PHE 3HB not found in molecular structure %READC-ERR: atom 128 GLY H not found in molecular structure %READC-ERR: atom 128 GLY 2HA not found in molecular structure %READC-ERR: atom 128 GLY 3HA not found in molecular structure %READC-ERR: atom 129 GLU H not found in molecular structure %READC-ERR: atom 129 GLU 2HB not found in molecular structure %READC-ERR: atom 129 GLU 3HB not found in molecular structure %READC-ERR: atom 129 GLU 2HG not found in molecular structure %READC-ERR: atom 129 GLU 3HG not found in molecular structure %READC-ERR: atom 130 TRP H not found in molecular structure %READC-ERR: atom 130 TRP 2HB not found in molecular structure %READC-ERR: atom 130 TRP 3HB not found in molecular structure %READC-ERR: atom 131 ASN H not found in molecular structure %READC-ERR: atom 131 ASN 2HB not found in molecular structure %READC-ERR: atom 131 ASN 3HB not found in molecular structure %READC-ERR: atom 131 ASN 1HD2 not found in molecular structure %READC-ERR: atom 131 ASN 2HD2 not found in molecular structure %READC-ERR: atom 132 PHE H not found in molecular structure %READC-ERR: atom 132 PHE 2HB not found in molecular structure %READC-ERR: atom 132 PHE 3HB not found in molecular structure %READC-ERR: atom 133 GLU H not found in molecular structure %READC-ERR: atom 133 GLU 2HB not found in molecular structure %READC-ERR: atom 133 GLU 3HB not found in molecular structure %READC-ERR: atom 133 GLU 2HG not found in molecular structure %READC-ERR: atom 133 GLU 3HG not found in molecular structure %READC-ERR: atom 134 GLU H not found in molecular structure %READC-ERR: atom 134 GLU 2HB not found in molecular structure %READC-ERR: atom 134 GLU 3HB not found in molecular structure %READC-ERR: atom 134 GLU 2HG not found in molecular structure %READC-ERR: atom 134 GLU 3HG not found in molecular structure %READC-ERR: atom 135 TRP H not found in molecular structure %READC-ERR: atom 135 TRP 2HB not found in molecular structure %READC-ERR: atom 135 TRP 3HB not found in molecular structure %READC-ERR: atom 136 LYS H not found in molecular structure %READC-ERR: atom 136 LYS 2HB not found in molecular structure %READC-ERR: atom 136 LYS 3HB not found in molecular structure %READC-ERR: atom 136 LYS 2HG not found in molecular structure %READC-ERR: atom 136 LYS 3HG not found in molecular structure %READC-ERR: atom 136 LYS 2HD not found in molecular structure %READC-ERR: atom 136 LYS 3HD not found in molecular structure %READC-ERR: atom 136 LYS 2HE not found in molecular structure %READC-ERR: atom 136 LYS 3HE not found in molecular structure %READC-ERR: atom 136 LYS 1HZ not found in molecular structure %READC-ERR: atom 136 LYS 2HZ not found in molecular structure %READC-ERR: atom 136 LYS 3HZ not found in molecular structure %READC-ERR: atom 137 ARG H not found in molecular structure %READC-ERR: atom 137 ARG 2HB not found in molecular structure %READC-ERR: atom 137 ARG 3HB not found in molecular structure %READC-ERR: atom 137 ARG 2HG not found in molecular structure %READC-ERR: atom 137 ARG 3HG not found in molecular structure %READC-ERR: atom 137 ARG 2HD not found in molecular structure %READC-ERR: atom 137 ARG 3HD not found in molecular structure %READC-ERR: atom 137 ARG 1HH1 not found in molecular structure %READC-ERR: atom 137 ARG 2HH1 not found in molecular structure %READC-ERR: atom 137 ARG 1HH2 not found in molecular structure %READC-ERR: atom 137 ARG 2HH2 not found in molecular structure %READC-ERR: atom 138 LEU H not found in molecular structure %READC-ERR: atom 138 LEU 2HB not found in molecular structure %READC-ERR: atom 138 LEU 3HB not found in molecular structure %READC-ERR: atom 138 LEU 1HD1 not found in molecular structure %READC-ERR: atom 138 LEU 2HD1 not found in molecular structure %READC-ERR: atom 138 LEU 3HD1 not found in molecular structure %READC-ERR: atom 138 LEU 1HD2 not found in molecular structure %READC-ERR: atom 138 LEU 2HD2 not found in molecular structure %READC-ERR: atom 138 LEU 3HD2 not found in molecular structure %READC-ERR: atom 139 HIS H not found in molecular structure %READC-ERR: atom 139 HIS 2HB not found in molecular structure %READC-ERR: atom 139 HIS 3HB not found in molecular structure %READC-ERR: atom 140 LYS H not found in molecular structure %READC-ERR: atom 140 LYS 2HB not found in molecular structure %READC-ERR: atom 140 LYS 3HB not found in molecular structure %READC-ERR: atom 140 LYS 2HG not found in molecular structure %READC-ERR: atom 140 LYS 3HG not found in molecular structure %READC-ERR: atom 140 LYS 2HD not found in molecular structure %READC-ERR: atom 140 LYS 3HD not found in molecular structure %READC-ERR: atom 140 LYS 2HE not found in molecular structure %READC-ERR: atom 140 LYS 3HE not found in molecular structure %READC-ERR: atom 140 LYS 1HZ not found in molecular structure %READC-ERR: atom 140 LYS 2HZ not found in molecular structure %READC-ERR: atom 140 LYS 3HZ not found in molecular structure %READC-ERR: atom 141 LYS H not found in molecular structure %READC-ERR: atom 141 LYS 2HB not found in molecular structure %READC-ERR: atom 141 LYS 3HB not found in molecular structure %READC-ERR: atom 141 LYS 2HG not found in molecular structure %READC-ERR: atom 141 LYS 3HG not found in molecular structure %READC-ERR: atom 141 LYS 2HD not found in molecular structure %READC-ERR: atom 141 LYS 3HD not found in molecular structure %READC-ERR: atom 141 LYS 2HE not found in molecular structure %READC-ERR: atom 141 LYS 3HE not found in molecular structure %READC-ERR: atom 141 LYS 1HZ not found in molecular structure %READC-ERR: atom 141 LYS 2HZ not found in molecular structure %READC-ERR: atom 141 LYS 3HZ not found in molecular structure %READC-ERR: atom 142 LYS H not found in molecular structure %READC-ERR: atom 142 LYS 2HB not found in molecular structure %READC-ERR: atom 142 LYS 3HB not found in molecular structure %READC-ERR: atom 142 LYS 2HG not found in molecular structure %READC-ERR: atom 142 LYS 3HG not found in molecular structure %READC-ERR: atom 142 LYS 2HD not found in molecular structure %READC-ERR: atom 142 LYS 3HD not found in molecular structure %READC-ERR: atom 142 LYS 2HE not found in molecular structure %READC-ERR: atom 142 LYS 3HE not found in molecular structure %READC-ERR: atom 142 LYS 1HZ not found in molecular structure %READC-ERR: atom 142 LYS 2HZ not found in molecular structure %READC-ERR: atom 142 LYS 3HZ not found in molecular structure %READC-ERR: atom 143 PHE H not found in molecular structure %READC-ERR: atom 143 PHE 2HB not found in molecular structure %READC-ERR: atom 143 PHE 3HB not found in molecular structure %READC-ERR: atom 144 ILE H not found in molecular structure %READC-ERR: atom 144 ILE 1HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG2 not found in molecular structure %READC-ERR: atom 144 ILE 3HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG1 not found in molecular structure %READC-ERR: atom 144 ILE 3HG1 not found in molecular structure %READC-ERR: atom 144 ILE 1HD1 not found in molecular structure %READC-ERR: atom 144 ILE 2HD1 not found in molecular structure %READC-ERR: atom 144 ILE 3HD1 not found in molecular structure %READC-ERR: atom 145 GLU H not found in molecular structure %READC-ERR: atom 145 GLU 2HB not found in molecular structure %READC-ERR: atom 145 GLU 3HB not found in molecular structure %READC-ERR: atom 145 GLU 2HG not found in molecular structure %READC-ERR: atom 145 GLU 3HG not found in molecular structure %READC-ERR: atom 146 THR H not found in molecular structure %READC-ERR: atom 146 THR 1HG2 not found in molecular structure %READC-ERR: atom 146 THR 2HG2 not found in molecular structure %READC-ERR: atom 146 THR 3HG2 not found in molecular structure %READC-ERR: atom 147 PHE H not found in molecular structure %READC-ERR: atom 147 PHE 2HB not found in molecular structure %READC-ERR: atom 147 PHE 3HB not found in molecular structure %READC-ERR: atom 148 LYS H not found in molecular structure %READC-ERR: atom 148 LYS 2HB not found in molecular structure %READC-ERR: atom 148 LYS 3HB not found in molecular structure %READC-ERR: atom 148 LYS 2HG not found in molecular structure %READC-ERR: atom 148 LYS 3HG not found in molecular structure %READC-ERR: atom 148 LYS 2HD not found in molecular structure %READC-ERR: atom 148 LYS 3HD not found in molecular structure %READC-ERR: atom 148 LYS 2HE not found in molecular structure %READC-ERR: atom 148 LYS 3HE not found in molecular structure %READC-ERR: atom 148 LYS 1HZ not found in molecular structure %READC-ERR: atom 148 LYS 2HZ not found in molecular structure %READC-ERR: atom 148 LYS 3HZ not found in molecular structure %READC-ERR: atom 149 LYS H not found in molecular structure %READC-ERR: atom 149 LYS 2HB not found in molecular structure %READC-ERR: atom 149 LYS 3HB not found in molecular structure %READC-ERR: atom 149 LYS 2HG not found in molecular structure %READC-ERR: atom 149 LYS 3HG not found in molecular structure %READC-ERR: atom 149 LYS 2HD not found in molecular structure %READC-ERR: atom 149 LYS 3HD not found in molecular structure %READC-ERR: atom 149 LYS 2HE not found in molecular structure %READC-ERR: atom 149 LYS 3HE not found in molecular structure %READC-ERR: atom 149 LYS 1HZ not found in molecular structure %READC-ERR: atom 149 LYS 2HZ not found in molecular structure %READC-ERR: atom 149 LYS 3HZ not found in molecular structure %READC-ERR: atom 150 ILE H not found in molecular structure %READC-ERR: atom 150 ILE 1HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG2 not found in molecular structure %READC-ERR: atom 150 ILE 3HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG1 not found in molecular structure %READC-ERR: atom 150 ILE 3HG1 not found in molecular structure %READC-ERR: atom 150 ILE 1HD1 not found in molecular structure %READC-ERR: atom 150 ILE 2HD1 not found in molecular structure %READC-ERR: atom 150 ILE 3HD1 not found in molecular structure %READC-ERR: atom 151 MET H not found in molecular structure %READC-ERR: atom 151 MET 2HB not found in molecular structure %READC-ERR: atom 151 MET 3HB not found in molecular structure %READC-ERR: atom 151 MET 2HG not found in molecular structure %READC-ERR: atom 151 MET 3HG not found in molecular structure %READC-ERR: atom 151 MET 1HE not found in molecular structure %READC-ERR: atom 151 MET 2HE not found in molecular structure %READC-ERR: atom 151 MET 3HE not found in molecular structure %READC-ERR: atom 152 GLU H not found in molecular structure %READC-ERR: atom 152 GLU 2HB not found in molecular structure %READC-ERR: atom 152 GLU 3HB not found in molecular structure %READC-ERR: atom 152 GLU 2HG not found in molecular structure %READC-ERR: atom 152 GLU 3HG not found in molecular structure %READC-ERR: atom 153 CYS H not found in molecular structure %READC-ERR: atom 153 CYS 2HB not found in molecular structure %READC-ERR: atom 153 CYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS H not found in molecular structure %READC-ERR: atom 154 LYS 2HB not found in molecular structure %READC-ERR: atom 154 LYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS 2HG not found in molecular structure %READC-ERR: atom 154 LYS 3HG not found in molecular structure %READC-ERR: atom 154 LYS 2HD not found in molecular structure %READC-ERR: atom 154 LYS 3HD not found in molecular structure %READC-ERR: atom 154 LYS 2HE not found in molecular structure %READC-ERR: atom 154 LYS 3HE not found in molecular structure %READC-ERR: atom 154 LYS 1HZ not found in molecular structure %READC-ERR: atom 154 LYS 2HZ not found in molecular structure %READC-ERR: atom 154 LYS 3HZ not found in molecular structure %READC-ERR: atom 155 LYS H not found in molecular structure %READC-ERR: atom 155 LYS 2HB not found in molecular structure %READC-ERR: atom 155 LYS 3HB not found in molecular structure %READC-ERR: atom 155 LYS 2HG not found in molecular structure %READC-ERR: atom 155 LYS 3HG not found in molecular structure %READC-ERR: atom 155 LYS 2HD not found in molecular structure %READC-ERR: atom 155 LYS 3HD not found in molecular structure %READC-ERR: atom 155 LYS 2HE not found in molecular structure %READC-ERR: atom 155 LYS 3HE not found in molecular structure %READC-ERR: atom 155 LYS 1HZ not found in molecular structure %READC-ERR: atom 155 LYS 2HZ not found in molecular structure %READC-ERR: atom 155 LYS 3HZ not found in molecular structure %READC-ERR: atom 156 LYS H not found in molecular structure %READC-ERR: atom 156 LYS 2HB not found in molecular structure %READC-ERR: atom 156 LYS 3HB not found in molecular structure %READC-ERR: atom 156 LYS 2HG not found in molecular structure %READC-ERR: atom 156 LYS 3HG not found in molecular structure %READC-ERR: atom 156 LYS 2HD not found in molecular structure %READC-ERR: atom 156 LYS 3HD not found in molecular structure %READC-ERR: atom 156 LYS 2HE not found in molecular structure %READC-ERR: atom 156 LYS 3HE not found in molecular structure %READC-ERR: atom 156 LYS 1HZ not found in molecular structure %READC-ERR: atom 156 LYS 2HZ not found in molecular structure %READC-ERR: atom 156 LYS 3HZ not found in molecular structure %READC-ERR: atom 157 PRO 2HB not found in molecular structure %READC-ERR: atom 157 PRO 3HB not found in molecular structure %READC-ERR: atom 157 PRO 2HG not found in molecular structure %READC-ERR: atom 157 PRO 3HG not found in molecular structure %READC-ERR: atom 157 PRO 2HD not found in molecular structure %READC-ERR: atom 157 PRO 3HD not found in molecular structure %READC-ERR: atom 158 GLN H not found in molecular structure %READC-ERR: atom 158 GLN 2HB not found in molecular structure %READC-ERR: atom 158 GLN 3HB not found in molecular structure %READC-ERR: atom 158 GLN 2HG not found in molecular structure %READC-ERR: atom 158 GLN 3HG not found in molecular structure %READC-ERR: atom 158 GLN 1HE2 not found in molecular structure %READC-ERR: atom 158 GLN 2HE2 not found in molecular structure %READC-ERR: atom 159 GLY H not found in molecular structure %READC-ERR: atom 159 GLY 2HA not found in molecular structure %READC-ERR: atom 159 GLY 3HA not found in molecular structure %READC-ERR: atom 160 GLN H not found in molecular structure %READC-ERR: atom 160 GLN 2HB not found in molecular structure %READC-ERR: atom 160 GLN 3HB not found in molecular structure %READC-ERR: atom 160 GLN 2HG not found in molecular structure %READC-ERR: atom 160 GLN 3HG not found in molecular structure %READC-ERR: atom 160 GLN 1HE2 not found in molecular structure %READC-ERR: atom 160 GLN 2HE2 not found in molecular structure %READC-ERR: atom 161 GLY H not found in molecular structure %READC-ERR: atom 161 GLY 2HA not found in molecular structure %READC-ERR: atom 161 GLY 3HA not found in molecular structure %READC-ERR: atom 162 ASN H not found in molecular structure %READC-ERR: atom 162 ASN 2HB not found in molecular structure %READC-ERR: atom 162 ASN 3HB not found in molecular structure %READC-ERR: atom 162 ASN 1HD2 not found in molecular structure %READC-ERR: atom 162 ASN 2HD2 not found in molecular structure %READC-ERR: atom 163 ASP H not found in molecular structure %READC-ERR: atom 163 ASP 2HB not found in molecular structure %READC-ERR: atom 163 ASP 3HB not found in molecular structure %READC-ERR: atom 164 ASP H not found in molecular structure %READC-ERR: atom 164 ASP 2HB not found in molecular structure %READC-ERR: atom 164 ASP 3HB not found in molecular structure %READC-ERR: atom 165 ILE H not found in molecular structure %READC-ERR: atom 165 ILE 1HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG2 not found in molecular structure %READC-ERR: atom 165 ILE 3HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG1 not found in molecular structure %READC-ERR: atom 165 ILE 3HG1 not found in molecular structure %READC-ERR: atom 165 ILE 1HD1 not found in molecular structure %READC-ERR: atom 165 ILE 2HD1 not found in molecular structure %READC-ERR: atom 165 ILE 3HD1 not found in molecular structure %READC-ERR: atom 166 SER H not found in molecular structure %READC-ERR: atom 166 SER 2HB not found in molecular structure %READC-ERR: atom 166 SER 3HB not found in molecular structure %READC-ERR: atom 167 HIS H not found in molecular structure %READC-ERR: atom 167 HIS 2HB not found in molecular structure %READC-ERR: atom 167 HIS 3HB not found in molecular structure %READC-ERR: atom 168 VAL H not found in molecular structure %READC-ERR: atom 168 VAL 1HG1 not found in molecular structure %READC-ERR: atom 168 VAL 2HG1 not found in molecular structure %READC-ERR: atom 168 VAL 3HG1 not found in molecular structure %READC-ERR: atom 168 VAL 1HG2 not found in molecular structure %READC-ERR: atom 168 VAL 2HG2 not found in molecular structure %READC-ERR: atom 168 VAL 3HG2 not found in molecular structure %READC-ERR: atom 169 LEU H not found in molecular structure %READC-ERR: atom 169 LEU 2HB not found in molecular structure %READC-ERR: atom 169 LEU 3HB not found in molecular structure %READC-ERR: atom 169 LEU 1HD1 not found in molecular structure %READC-ERR: atom 169 LEU 2HD1 not found in molecular structure %READC-ERR: atom 169 LEU 3HD1 not found in molecular structure %READC-ERR: atom 169 LEU 1HD2 not found in molecular structure %READC-ERR: atom 169 LEU 2HD2 not found in molecular structure %READC-ERR: atom 169 LEU 3HD2 not found in molecular structure %READC-ERR: atom 170 ARG H not found in molecular structure %READC-ERR: atom 170 ARG 2HB not found in molecular structure %READC-ERR: atom 170 ARG 3HB not found in molecular structure %READC-ERR: atom 170 ARG 2HG not found in molecular structure %READC-ERR: atom 170 ARG 3HG not found in molecular structure %READC-ERR: atom 170 ARG 2HD not found in molecular structure %READC-ERR: atom 170 ARG 3HD not found in molecular structure %READC-ERR: atom 170 ARG 1HH1 not found in molecular structure %READC-ERR: atom 170 ARG 2HH1 not found in molecular structure %READC-ERR: atom 170 ARG 1HH2 not found in molecular structure %READC-ERR: atom 170 ARG 2HH2 not found in molecular structure %READC-ERR: atom 171 GLU H not found in molecular structure %READC-ERR: atom 171 GLU 2HB not found in molecular structure %READC-ERR: atom 171 GLU 3HB not found in molecular structure %READC-ERR: atom 171 GLU 2HG not found in molecular structure %READC-ERR: atom 171 GLU 3HG not found in molecular structure %READC-ERR: atom 172 ASP H not found in molecular structure %READC-ERR: atom 172 ASP 2HB not found in molecular structure %READC-ERR: atom 172 ASP 3HB not found in molecular structure %READC-ERR: atom 173 GLN H not found in molecular structure %READC-ERR: atom 173 GLN 2HB not found in molecular structure %READC-ERR: atom 173 GLN 3HB not found in molecular structure %READC-ERR: atom 173 GLN 2HG not found in molecular structure %READC-ERR: atom 173 GLN 3HG not found in molecular structure %READC-ERR: atom 173 GLN 1HE2 not found in molecular structure %READC-ERR: atom 173 GLN 2HE2 not found in molecular structure %READC-ERR: atom 173 GLN O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 1383.00 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 1411 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 1383.00 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 173 atoms have been selected out of 2794 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 16.988250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.9883 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 16.107750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.1078 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -36.140250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.1403 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 10.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 20.919286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.9193 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 14.181643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.1816 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -35.070500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.0705 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 18.167500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.1675 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 9.210143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.21014 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -36.396929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.3969 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 46.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 23.063214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.0632 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 6.856000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.85600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -34.139286 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.1393 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 64.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 21.036500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.0365 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 1.537571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.53757 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -34.411643 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.4116 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 82.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 25.862857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.8629 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 1.415643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.41564 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -35.450714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.4507 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 100.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 25.590643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.5906 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -3.657000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.65700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -33.256357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.2564 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 118.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 27.674700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.6747 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.025900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.02590 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -36.689900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.6899 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 137.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 27.305900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.3059 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.211000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.2110 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -35.288300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.2883 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 152.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 30.787500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7875 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -12.965250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.9653 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -37.324625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.3246 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 163.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 31.252500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.2525 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.764625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.7646 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -35.850750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.8508 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 174.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 34.350625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.3506 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -18.485500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.4855 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -38.360875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -38.3609 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 185.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 35.287222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.2872 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.527111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.5271 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -35.903333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.9033 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 197.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 34.596125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.5961 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -21.565125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.5651 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -30.910000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.9100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 208.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 36.494400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.4944 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.871800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.8718 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -31.521600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.5216 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.006100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.0061 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.282200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.2822 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -30.296200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.2962 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.198600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1986 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.121500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.1215 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -26.938700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.9387 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 263.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 43.887214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.8872 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -19.773571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.7736 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -27.347786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.3478 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 281.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.989667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.9897 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.207222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2072 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.948778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.9488 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 295.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.768222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.7682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.758333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.7583 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -22.036667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.0367 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 311.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 47.633059 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.6331 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -11.682118 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.6821 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -16.199176 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.1992 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 331.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 46.361556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.3616 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.280222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.28022 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.392667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.3927 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 347.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 48.927389 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.9274 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -3.820611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.82061 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -16.974778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.9748 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 368.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 45.229750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.2298 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -3.203750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.20375 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.610000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.6100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 375.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 46.317000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.3170 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -2.461500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.46150 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -21.239625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.2396 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 386.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 44.698647 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.6986 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -4.839765 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.83976 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -23.358176 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.3582 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 406.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.169100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.1691 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.292600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.29260 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.850500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.8505 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 423.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 37.919222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9192 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.762111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.76211 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.715111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7151 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 435.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 35.913750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.9138 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.720250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.72025 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -21.086875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.0869 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 449.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 34.727556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.7276 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.440889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.44089 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -22.481889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.4819 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 461.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.050333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.0503 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.641222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.64122 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -24.031111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.0311 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 477.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 38.391800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.3918 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.794100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.79410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.668600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.6686 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 496.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 33.901222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.9012 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.671444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.67144 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -26.871111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.8711 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 510.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 36.250444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.2504 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.952222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.952222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.120667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.1207 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 526.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 40.071222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.0712 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.071333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.07133 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -30.214778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.2148 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 543.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.111700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.1117 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.499000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.49900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -31.369700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.3697 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 562.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 32.602000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.6020 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.056556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.05656 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -31.723333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.7233 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 574.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 31.473769 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.4738 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -8.530308 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.53031 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -29.429000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.4290 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 598.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 34.529600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.5296 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.262500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.26250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.853100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.8531 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 612.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 36.221125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.2211 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -12.798125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.7981 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -23.897250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.8973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 33.930700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.9307 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.609600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.6096 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.725600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.7256 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 641.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.317000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.3170 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.918600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.9186 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -17.872600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.8726 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 660.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 38.725000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.7250 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.994778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.9948 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.579222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.5792 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 676.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 40.235750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.2358 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -12.927875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.9279 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -11.287125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2871 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 44.103000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.1030 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -14.508500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.5085 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -11.629000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6290 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 697.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.391000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.3910 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.438500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4385 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.340400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.34040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 711.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.447700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.4477 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.101600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1016 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.886600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.8866 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 730.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 53.068875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.0689 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.109500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.1095 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -10.009750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0098 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 744.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 56.954500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.9545 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -14.178000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -10.954500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.9545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 751.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 56.362294 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.3623 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -12.559941 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.5599 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -13.903882 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.9039 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 771.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 55.869300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.8693 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.307200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.30720 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.438600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.43860 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 788.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 51.576385 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.5764 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -3.290615 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.29062 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -11.654846 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6548 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 812.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 57.177588 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.1776 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -2.332118 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.33212 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -12.176059 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.1761 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 832.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 53.895462 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.8955 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 3.899385 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.89938 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -10.630231 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.6302 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 856.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.234600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.2346 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.894300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.89430 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.583800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.5838 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 875.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 58.158700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.1587 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.689400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.68940 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.443100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4431 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 897.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 58.749000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.7490 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 7.384500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.38450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -16.930000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.9300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 904.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 62.292615 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.2926 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 6.851154 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.85115 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -21.179846 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.1798 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 928.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 58.195600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.1956 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.530400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.53040 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -20.454500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.4545 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 947.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 54.416889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.4169 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 1.921056 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.92106 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -22.161222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.1612 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 53.713375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.7134 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 0.895500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.895500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.999125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.9991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 982.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 55.809000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.8090 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -2.994000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.99400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -17.551875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.5519 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 993.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.536900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.5369 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.794700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.79470 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.155100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.1551 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1012.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 58.871778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.8718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.608222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.60822 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.955333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.9553 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 60.134250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.1343 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -10.983375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.9834 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -14.120875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1209 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 60.355875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.3559 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -11.196375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.1964 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.348625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.34863 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1053.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 64.120600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 64.1206 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.522200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.5222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.526600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.52660 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1068.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 60.768200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.7682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.922700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.9227 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.952800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.95280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1090.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 56.861250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.8613 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -12.149250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.1493 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -7.140250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.14025 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1097.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.375200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.3752 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.550900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.5509 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.574500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.57450 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1112.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 51.127333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.1273 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.962556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.96256 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.795000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.7950 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1128.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 47.470929 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.4709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -10.161429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1614 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -7.579214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.57921 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1146.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 44.674000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.6740 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -9.692750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.69275 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -12.205500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.2055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1153.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.855900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.8559 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.568400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.56840 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.083900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.0839 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1175.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 42.585444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.5854 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.973667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.9737 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.108333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.1083 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1191.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 40.749600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.7496 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.219300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.2193 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.012300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.0123 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1210.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.237667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.2377 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.307222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.3072 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.610444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.6104 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1227.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 38.017500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.0175 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.253750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.2538 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -25.234250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.2343 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1234.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 40.441556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.4416 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.660889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.6609 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.260000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.2600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.139300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1393 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.397000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3970 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -31.374600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.3746 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1264.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 42.711750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.7118 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -18.860750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.8608 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -33.058250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.0582 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1275.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 42.133778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.1338 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.547556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.5476 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -35.479222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.4792 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1287.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.614600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.6146 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.763800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.7638 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -31.679800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.6798 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1302.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.615300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.6153 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.591700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.5917 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.726700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.7267 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1321.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.000900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.0009 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.377200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.3772 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -33.801900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.8019 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1336.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.330667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.3307 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.334333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.33433 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -32.714222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.7142 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1350.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.813600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.8136 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.771400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.77140 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -28.583500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.5835 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 51.142444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.1424 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.815222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.8152 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.880000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.8800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1381.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 50.432167 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.4322 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -7.719833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.71983 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -32.382667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.3827 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1391.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.678889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.6789 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.984333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.98433 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.961556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.9616 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1407.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.879200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.8792 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.882700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.88270 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -27.060200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.0602 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 54.425750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.4258 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -6.489000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.48900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -29.553000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.5530 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1429.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 54.312556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.3126 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.127333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.12733 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -30.815889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.8159 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1443.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 56.115800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.1158 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.288100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.28810 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -27.276900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.2769 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 54.896556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.8966 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -4.766056 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.76606 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -23.812667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.8127 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1479.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 57.956100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.9561 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.181000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.1810 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.861800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.8618 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 53.309077 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.3091 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -14.469231 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4692 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -27.452077 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.4521 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1518.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 55.866556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.8666 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.698556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.6986 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -22.652667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.6527 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1534.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.301900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.3019 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.820400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.8204 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.409500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.4095 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1548.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 53.259556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.2596 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.068333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.0683 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.523000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.5230 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 51.382250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.3823 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -19.159500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1595 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -14.545750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.5458 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1571.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.753900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.7539 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.145700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.1457 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.440800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.4408 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1590.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 46.434889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.4349 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.968556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.9686 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.349556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.34956 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1606.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 40.373462 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.3735 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -19.493077 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.4931 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -10.349308 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.3493 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1630.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.782200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.7822 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.176700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1767 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.273800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.27380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1645.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 37.998000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9980 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.528444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.5284 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.385222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.38522 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1657.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 40.426667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.4267 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.204444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.2044 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.407222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.40722 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1671.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 44.734875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.7349 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -22.372125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.3721 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.023250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.02325 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1682.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 42.299600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.2996 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.949300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -23.9493 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.073700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.07370 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.631500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.6315 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.566900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.5669 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.439700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4397 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1719.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 44.905889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.9059 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -22.167778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.1678 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.270556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.2706 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1736.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 47.719000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.7190 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -21.921167 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.9212 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -18.233333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.2333 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1746.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 47.600667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.6007 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.280111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2801 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.566111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.5661 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1762.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.799700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.7997 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -17.200800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.2008 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.092500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.0925 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1784.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.605000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.6050 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.917300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.9173 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -20.017000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.0170 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1798.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 51.088556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.0886 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -10.170778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1708 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -23.379056 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.3791 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1819.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 57.342556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.3426 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.000556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0006 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.289000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.2890 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1836.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 59.985286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.9853 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -3.929429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.92943 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -21.337000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.3370 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1860.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 61.868000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.8680 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.040200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.04020 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.462800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.4628 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1879.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 65.057222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.0572 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.801000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.80100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.296778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.2968 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1893.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 63.869100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.8691 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.931900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.93190 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -17.860400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.8604 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1915.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 67.136333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 67.1363 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -4.247333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.24733 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -17.432833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.4328 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1925.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 65.624889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.6249 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.427444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.427444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.315111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.3151 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1937.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 65.467250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.4673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 2.048375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.04838 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -15.231375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.2314 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1951.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 63.463444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.4634 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 3.565333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.56533 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.408333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.4083 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1963.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 60.284222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.2842 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 0.629444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.629444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -16.519222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.5192 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1980.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 62.232941 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.2329 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 2.420412 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.42041 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -10.556824 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.5568 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2000.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 58.034500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.0345 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 2.145500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.14550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -10.406000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4060 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 58.255900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.2559 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.070500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.07050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.202700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.20270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2022.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 51.107381 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.1074 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -0.282381 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.282381 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -5.766048 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.76605 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2046.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 51.208444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.2084 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 4.189000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.18900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.920778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.92078 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2060.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 50.567941 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.5679 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -0.741706 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.741706 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -1.060706 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.06071 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2080.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 57.250800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.2508 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.378300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.378300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.801500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.80150 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2095.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 55.151900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.1519 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.279000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.27900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.345700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.34570 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2110.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 53.252905 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.2529 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 6.018667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.01867 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 4.178333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.17833 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2134.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 59.653600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.6536 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.665400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.66540 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.482800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.48280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2156.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 60.734769 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.7348 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 9.315846 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.31585 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -0.019769 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.197692E-01 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2180.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 56.062200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.0622 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.445900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.4459 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.024100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.02410 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2199.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 57.389143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.3891 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 6.843429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.84343 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 7.509357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.50936 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2217.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 62.405400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.4054 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.255700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.2557 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.995700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.99570 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2239.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 58.011300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.0113 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.500400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.5004 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 4.731500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.73150 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2261.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 56.615200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.6152 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.917200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.9172 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.099100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.0991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2283.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 62.673471 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.6735 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 13.013941 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.0139 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 12.463706 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.4637 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2303.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 62.556900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.5569 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 15.846300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.8463 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.973300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.97330 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2322.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 58.513600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.5136 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 18.779600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.7796 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.648500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.64850 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2337.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 62.439000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.4390 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 18.608100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.6081 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.317200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.3172 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2351.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 67.651706 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 67.6517 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 19.712294 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.7123 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 9.490353 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.49035 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2371.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 61.621300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.6213 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 21.387500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.3875 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.010200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.01020 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2393.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 61.545500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.5455 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 24.430800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.4308 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.700000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.7000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2415.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 66.677000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 66.6770 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 24.147400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.1474 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.439600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.4396 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2434.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 67.684333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 67.6843 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 24.620111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.6201 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 5.376444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.37644 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2451.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 62.643900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.6439 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 26.884500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.8845 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.766800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.76680 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2466.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 65.567250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.5673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 30.251000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.2510 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 8.021250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.02125 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2477.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 69.861100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 69.8611 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 28.827500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.8275 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.969900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.96990 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2499.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 66.815700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 66.8157 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 28.741100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 28.7411 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.610300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.610300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2521.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 61.126400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.1264 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 30.573100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.5731 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.483300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.48330 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 61.875625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.8756 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 29.197625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 29.1976 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -1.318125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.31813 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2557.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 57.341300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.3413 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 30.062600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 30.0626 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.738100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.73810 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2574.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 57.345250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.3452 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 26.212250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 26.2123 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -4.691250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.69125 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2581.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.586900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.5869 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 24.123000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.1230 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.347800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.34780 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2598.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 51.635500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.6355 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 22.174500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.1745 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -3.760750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.76075 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2605.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.105000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.1050 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 21.930667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.9307 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.412556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.41256 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2619.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.593556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.5936 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.976444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.9764 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.000667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.00067 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2631.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 42.146333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.1463 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.994556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.9946 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.319778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.31978 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2643.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.126600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1266 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.958100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.9581 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.957100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.95710 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2662.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 35.665000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.6650 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 14.701375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.7014 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -0.107000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.107000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2673.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 32.836000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.8360 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 12.730071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.7301 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -2.368714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.36871 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2691.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 28.706667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.7067 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 14.319000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.3190 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 1.070000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.07000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2707.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 25.597800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.5978 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.003100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.0031 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.921300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.921300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2726.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 20.727000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.7270 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 14.758385 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.7584 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 1.569462 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.56946 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2750.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 18.719800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.7198 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.489500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.4895 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.426300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.42630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2765.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 15.441667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.4417 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 12.249333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.2493 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 4.056556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.05656 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2777.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 11.942889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.9429 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 11.062556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.0626 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 8.365444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.36544 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 1383 atoms have been selected out of 2794 SELRPN: 2794 atoms have been selected out of 2794 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 1383 exclusions and 0 interactions(1-4) %atoms " -7 -HIS -HN " and " -7 -HIS -HB1 " only 0.09 A apart %atoms " -31 -VAL -HN " and " -31 -VAL -HG23" only 0.08 A apart %atoms " -54 -ARG -HA " and " -54 -ARG -HH22" only 0.07 A apart %atoms " -59 -LEU -HN " and " -59 -LEU -HB2 " only 0.03 A apart %atoms " -62 -CYS -HN " and " -62 -CYS -HB1 " only 0.07 A apart %atoms " -68 -LYS -HN " and " -68 -LYS -HZ2 " only 0.06 A apart %atoms " -74 -LYS -HE1 " and " -74 -LYS -HZ3 " only 0.10 A apart %atoms " -136 -LYS -HB2 " and " -136 -LYS -HD1 " only 0.06 A apart %atoms " -143 -PHE -HE1 " and " -143 -PHE -HZ " only 0.05 A apart %atoms " -144 -ILE -HB " and " -144 -ILE -HG22" only 0.07 A apart %atoms " -148 -LYS -HE1 " and " -148 -LYS -HE2 " only 0.07 A apart %atoms " -159 -GLY -HN " and " -159 -GLY -HA2 " only 0.05 A apart %atoms " -168 -VAL -HG11" and " -168 -VAL -HG23" only 0.03 A apart %atoms " -169 -LEU -CA " and " -169 -LEU -HD13" only 0.07 A apart NBONDS: found 159809 intra-atom interactions NBONDS: found 14 nonbonded violations %atoms " -16 -GLN -HB2 " and " -16 -GLN -HG2 " only 0.09 A apart %atoms " -17 -LEU -CB " and " -17 -LEU -HD12" only 0.06 A apart %atoms " -52 -ARG -HD1 " and " -52 -ARG -HH21" only 0.10 A apart %atoms " -64 -VAL -HA " and " -64 -VAL -HB " only 0.08 A apart %atoms " -149 -LYS -HD2 " and " -149 -LYS -HZ3 " only 0.05 A apart %atoms " -158 -GLN -HA " and " -158 -GLN -HE22" only 0.08 A apart %atoms " -173 -GLN -HE22" and " -173 -GLN -OT1 " only 0.10 A apart NBONDS: found 159207 intra-atom interactions NBONDS: found 7 nonbonded violations NBONDS: found 146869 intra-atom interactions NBONDS: found 150210 intra-atom interactions NBONDS: found 145185 intra-atom interactions NBONDS: found 146844 intra-atom interactions NBONDS: found 147416 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0005 ----------------------- | Etotal =735563.929 grad(E)=576.675 E(BOND)=112914.677 E(ANGL)=347229.427 | | E(VDW )=275419.825 | ------------------------------------------------------------------------------- NBONDS: found 148178 intra-atom interactions NBONDS: found 148031 intra-atom interactions NBONDS: found 148251 intra-atom interactions NBONDS: found 148374 intra-atom interactions NBONDS: found 148505 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0006 ----------------------- | Etotal =260742.518 grad(E)=341.743 E(BOND)=38683.492 E(ANGL)=90896.278 | | E(VDW )=131162.749 | ------------------------------------------------------------------------------- NBONDS: found 148697 intra-atom interactions NBONDS: found 148635 intra-atom interactions NBONDS: found 148751 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0006 ----------------------- | Etotal =214639.395 grad(E)=317.016 E(BOND)=35971.300 E(ANGL)=65301.461 | | E(VDW )=113366.634 | ------------------------------------------------------------------------------- NBONDS: found 148825 intra-atom interactions NBONDS: found 148801 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0005 ----------------------- | Etotal =208169.450 grad(E)=311.433 E(BOND)=34400.934 E(ANGL)=62111.401 | | E(VDW )=111657.115 | ------------------------------------------------------------------------------- NBONDS: found 148852 intra-atom interactions NBONDS: found 148866 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0006 ----------------------- | Etotal =207420.493 grad(E)=311.216 E(BOND)=34550.095 E(ANGL)=61766.030 | | E(VDW )=111104.369 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=917825.142 E(kin)=1260.215 temperature=305.697 | | Etotal =916564.927 grad(E)=597.028 E(BOND)=34550.095 E(ANGL)=61766.030 | | E(IMPR)=820248.802 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=594245.373 E(kin)=93280.917 temperature=22627.666 | | Etotal =500964.456 grad(E)=346.279 E(BOND)=58664.070 E(ANGL)=189058.070 | | E(IMPR)=253242.316 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.39153 -2.13677 -14.09972 velocity [A/ps] : -1.24168 0.27618 -0.26580 ang. mom. [amu A/ps] :-904154.50595-149991.42065 125662.92672 kin. ener. [Kcal/mol] : 55.81895 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: found 147533 intra-atom interactions NBONDS: found 147587 intra-atom interactions NBONDS: found 147934 intra-atom interactions NBONDS: found 148557 intra-atom interactions NBONDS: found 148240 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =493960.790 grad(E)=353.387 E(BOND)=52590.442 E(ANGL)=119873.237 | | E(IMPR)=246668.755 E(VDW )=74828.356 | ------------------------------------------------------------------------------- NBONDS: found 148563 intra-atom interactions NBONDS: found 148407 intra-atom interactions NBONDS: found 148413 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0001 ----------------------- | Etotal =319087.514 grad(E)=261.912 E(BOND)=34797.658 E(ANGL)=61472.655 | | E(IMPR)=145203.048 E(VDW )=77614.152 | ------------------------------------------------------------------------------- NBONDS: found 148369 intra-atom interactions NBONDS: found 148352 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0002 ----------------------- | Etotal =252136.762 grad(E)=260.947 E(BOND)=34124.767 E(ANGL)=44465.842 | | E(IMPR)=100622.594 E(VDW )=72923.560 | ------------------------------------------------------------------------------- NBONDS: found 148489 intra-atom interactions NBONDS: found 148497 intra-atom interactions NBONDS: found 148509 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0001 ----------------------- | Etotal =208147.452 grad(E)=249.387 E(BOND)=32308.776 E(ANGL)=30426.066 | | E(IMPR)=77851.362 E(VDW )=67561.248 | ------------------------------------------------------------------------------- NBONDS: found 148583 intra-atom interactions NBONDS: found 148537 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0003 ----------------------- | Etotal =190249.233 grad(E)=248.288 E(BOND)=30463.303 E(ANGL)=25511.901 | | E(IMPR)=67035.880 E(VDW )=67238.149 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=191462.638 E(kin)=1213.406 temperature=294.342 | | Etotal =190249.233 grad(E)=248.288 E(BOND)=30463.303 E(ANGL)=25511.901 | | E(IMPR)=67035.880 E(VDW )=67238.149 | ------------------------------------------------------------------------------- NBONDS: found 148507 intra-atom interactions NBONDS: found 148508 intra-atom interactions NBONDS: found 148518 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=185069.132 E(kin)=5610.367 temperature=1360.938 | | Etotal =179458.765 grad(E)=254.214 E(BOND)=31722.059 E(ANGL)=23736.570 | | E(IMPR)=57398.403 E(VDW )=66601.733 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.40550 -2.13721 -14.07704 velocity [A/ps] : -0.15182 -0.03187 0.02770 ang. mom. [amu A/ps] : -71461.36000 43361.24191 23916.52449 kin. ener. [Kcal/mol] : 0.82081 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 145338 intra-atom interactions NBONDS: found 146082 intra-atom interactions NBONDS: found 145913 intra-atom interactions NBONDS: found 146036 intra-atom interactions NBONDS: found 145980 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0003 ----------------------- | Etotal =57421.739 grad(E)=38.058 E(BOND)=1993.787 E(ANGL)=14931.678 | | E(IMPR)=40496.273 E(VDW )=0.000 | ------------------------------------------------------------------------------- NBONDS: found 146066 intra-atom interactions NBONDS: found 146063 intra-atom interactions NBONDS: found 146020 intra-atom interactions NBONDS: found 145966 intra-atom interactions NBONDS: found 146035 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0002 ----------------------- | Etotal =32023.445 grad(E)=47.659 E(BOND)=1355.745 E(ANGL)=13566.601 | | E(IMPR)=17088.780 E(VDW )=12.318 | ------------------------------------------------------------------------------- NBONDS: found 146050 intra-atom interactions NBONDS: found 146095 intra-atom interactions NBONDS: found 146106 intra-atom interactions NBONDS: found 146056 intra-atom interactions NBONDS: found 146076 intra-atom interactions --------------- cycle= 75 ------ stepsize= 0.0006 ----------------------- | Etotal =4575.834 grad(E)=25.471 E(BOND)=184.220 E(ANGL)=2721.878 | | E(IMPR)=1661.520 E(VDW )=8.216 | ------------------------------------------------------------------------------- NBONDS: found 146058 intra-atom interactions NBONDS: found 146037 intra-atom interactions NBONDS: found 146084 intra-atom interactions NBONDS: found 146045 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0002 ----------------------- | Etotal =1979.452 grad(E)=17.298 E(BOND)=165.179 E(ANGL)=777.528 | | E(IMPR)=1034.635 E(VDW )=2.109 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=3251.822 E(kin)=1274.131 temperature=309.073 | | Etotal =1977.691 grad(E)=10.151 E(BOND)=103.047 E(ANGL)=634.543 | | E(IMPR)=1240.020 E(VDW )=0.081 | ------------------------------------------------------------------------------- NBONDS: found 146054 intra-atom interactions NBONDS: found 146023 intra-atom interactions NBONDS: found 146038 intra-atom interactions NBONDS: found 146054 intra-atom interactions NBONDS: found 146090 intra-atom interactions NBONDS: found 146030 intra-atom interactions NBONDS: found 146025 intra-atom interactions NBONDS: found 146079 intra-atom interactions NBONDS: found 146006 intra-atom interactions NBONDS: found 146036 intra-atom interactions NBONDS: found 146095 intra-atom interactions NBONDS: found 146060 intra-atom interactions NBONDS: found 146054 intra-atom interactions NBONDS: found 146064 intra-atom interactions NBONDS: found 146076 intra-atom interactions NBONDS: found 146046 intra-atom interactions NBONDS: found 146070 intra-atom interactions NBONDS: found 146028 intra-atom interactions NBONDS: found 146014 intra-atom interactions NBONDS: found 146071 intra-atom interactions NBONDS: found 146025 intra-atom interactions NBONDS: found 145943 intra-atom interactions NBONDS: found 145995 intra-atom interactions NBONDS: found 146018 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2440.199 E(kin)=1128.402 temperature=273.723 | | Etotal =1311.796 grad(E)=37.619 E(BOND)=398.661 E(ANGL)=813.280 | | E(IMPR)=99.376 E(VDW )=0.480 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.40263 -2.13346 -14.07596 velocity [A/ps] : -0.10258 -0.01356 0.01647 ang. mom. [amu A/ps] : -3.89960 28217.38067 -64310.83610 kin. ener. [Kcal/mol] : 0.36287 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 146018 intra-atom interactions NBONDS: found 145917 intra-atom interactions --------------- cycle= 50 ------ stepsize= -0.0004 ----------------------- | Etotal =154.565 grad(E)=3.609 E(BOND)=1.299 E(ANGL)=41.534 | | E(DIHE)=57.058 E(IMPR)=3.129 E(VDW )=51.545 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= -0.0003 ----------------------- | Etotal =102.057 grad(E)=2.701 E(BOND)=0.574 E(ANGL)=37.195 | | E(DIHE)=26.858 E(IMPR)=1.587 E(VDW )=35.843 | ------------------------------------------------------------------------------- --------------- cycle= 150 ------ stepsize= 0.0001 ----------------------- | Etotal =82.053 grad(E)=2.633 E(BOND)=0.475 E(ANGL)=37.024 | | E(DIHE)=10.427 E(IMPR)=1.660 E(VDW )=32.467 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0011 ----------------------- | Etotal =78.408 grad(E)=2.593 E(BOND)=0.463 E(ANGL)=36.840 | | E(DIHE)=7.876 E(IMPR)=1.527 E(VDW )=31.702 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0003 ----------------------- | Etotal =77.791 grad(E)=2.579 E(BOND)=0.443 E(ANGL)=36.762 | | E(DIHE)=7.721 E(IMPR)=1.519 E(VDW )=31.346 | ------------------------------------------------------------------------------- NBONDS: found 145946 intra-atom interactions --------------- cycle= 300 ------ stepsize= 0.0004 ----------------------- | Etotal =77.767 grad(E)=2.579 E(BOND)=0.443 E(ANGL)=36.763 | | E(DIHE)=7.704 E(IMPR)=1.518 E(VDW )=31.339 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0000 ----------------------- | Etotal =77.766 grad(E)=2.579 E(BOND)=0.443 E(ANGL)=36.763 | | E(DIHE)=7.709 E(IMPR)=1.518 E(VDW )=31.333 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1344.272 E(kin)=1266.506 temperature=307.223 | | Etotal =77.766 grad(E)=2.579 E(BOND)=0.443 E(ANGL)=36.762 | | E(DIHE)=7.711 E(IMPR)=1.518 E(VDW )=31.331 | ------------------------------------------------------------------------------- NBONDS: found 146023 intra-atom interactions NBONDS: found 145957 intra-atom interactions NBONDS: found 145864 intra-atom interactions NBONDS: found 145884 intra-atom interactions NBONDS: found 145886 intra-atom interactions NBONDS: found 145861 intra-atom interactions NBONDS: found 145840 intra-atom interactions NBONDS: found 145826 intra-atom interactions NBONDS: found 145848 intra-atom interactions NBONDS: found 145870 intra-atom interactions NBONDS: found 145911 intra-atom interactions NBONDS: found 145975 intra-atom interactions NBONDS: found 145961 intra-atom interactions NBONDS: found 146001 intra-atom interactions NBONDS: found 145878 intra-atom interactions NBONDS: found 145900 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2537.191 E(kin)=1356.068 temperature=328.949 | | Etotal =1181.123 grad(E)=33.486 E(BOND)=205.619 E(ANGL)=765.228 | | E(DIHE)=54.241 E(IMPR)=111.487 E(VDW )=44.548 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 47.62106 -1.88249 -13.66244 velocity [A/ps] : 0.36038 -0.22089 -0.91528 ang. mom. [amu A/ps] : 1508.09211 8153.85503 4427.10934 kin. ener. [Kcal/mol] : 1.72968 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 4149 --------------- cycle= 50 ------ stepsize= 0.0000 ----------------------- | Etotal =105.791 grad(E)=2.890 E(BOND)=0.505 E(ANGL)=38.784 | | E(DIHE)=31.377 E(IMPR)=1.827 E(VDW )=33.298 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= 0.0000 ----------------------- | Etotal =88.853 grad(E)=2.661 E(BOND)=0.524 E(ANGL)=37.116 | | E(DIHE)=16.299 E(IMPR)=1.621 E(VDW )=33.292 | ------------------------------------------------------------------------------- NBONDS: found 145955 intra-atom interactions --------------- cycle= 150 ------ stepsize= -0.0002 ----------------------- | Etotal =81.381 grad(E)=2.607 E(BOND)=0.481 E(ANGL)=36.865 | | E(DIHE)=10.618 E(IMPR)=1.560 E(VDW )=31.857 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= -0.0002 ----------------------- | Etotal =78.222 grad(E)=2.584 E(BOND)=0.445 E(ANGL)=36.810 | | E(DIHE)=8.208 E(IMPR)=1.521 E(VDW )=31.238 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0005 ----------------------- | Etotal =77.805 grad(E)=2.580 E(BOND)=0.443 E(ANGL)=36.777 | | E(DIHE)=7.727 E(IMPR)=1.519 E(VDW )=31.339 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0006 ----------------------- | Etotal =77.770 grad(E)=2.579 E(BOND)=0.443 E(ANGL)=36.763 | | E(DIHE)=7.707 E(IMPR)=1.518 E(VDW )=31.339 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0001 ----------------------- | Etotal =77.767 grad(E)=2.579 E(BOND)=0.443 E(ANGL)=36.762 | | E(DIHE)=7.712 E(IMPR)=1.518 E(VDW )=31.331 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0004 ----------------------- | Etotal =77.766 grad(E)=2.579 E(BOND)=0.443 E(ANGL)=36.762 | | E(DIHE)=7.712 E(IMPR)=1.518 E(VDW )=31.330 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. Number of violations greater 0.020: 0 RMS deviation= 0.001 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. Number of violations greater 5.000: 0 RMS deviation= 0.276 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 2794 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 1411 atoms have been selected out of 2794 SHOW: average of selected elements = 37.769313 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_11_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1630904 current use = 0 bytes HEAP: maximum overhead = 904 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1630904 bytes Maximum dynamic memory overhead: 904 bytes Program started at: 22:27:06 on 19-Jan-06 Program stopped at: 22:27:48 on 19-Jan-06 CPU time used: 41.9500 seconds ============================================================