============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 22:27:48 on 19-Jan-06 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_12.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_12_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/francis/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) = end SEGMNT: 173 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 2794(MAXA= 40000) NBOND= 2828(MAXB= 40000) -> NTHETA= 5113(MAXT= 80000) NGRP= 175(MAXGRP= 40000) -> NPHI= 4293(MAXP= 80000) NIMPHI= 1491(MAXIMP= 40000) -> NNB= 984(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER STRUCTURE FROM CYANA 2.1 14-JAN-06 1PDB COOR>EXPDTA NMR, 20 STRUCTURES COOR>REMARK model 12 COOR>ATOM 1 N GLY A 1 42.823 -32.127 -58.598 1.00 15.44 %READC-ERR: atom 1 GLY H not found in molecular structure %READC-ERR: atom 1 GLY 2HA not found in molecular structure %READC-ERR: atom 1 GLY 3HA not found in molecular structure %READC-ERR: atom 2 HIS H not found in molecular structure %READC-ERR: atom 2 HIS 2HB not found in molecular structure %READC-ERR: atom 2 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS H not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS H not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS H not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS H not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS H not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 8 LEU H not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 GLU H not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 10 CYS H not found in molecular structure %READC-ERR: atom 10 CYS 2HB not found in molecular structure %READC-ERR: atom 10 CYS 3HB not found in molecular structure %READC-ERR: atom 11 SER H not found in molecular structure %READC-ERR: atom 11 SER 2HB not found in molecular structure %READC-ERR: atom 11 SER 3HB not found in molecular structure %READC-ERR: atom 12 SER H not found in molecular structure %READC-ERR: atom 12 SER 2HB not found in molecular structure %READC-ERR: atom 12 SER 3HB not found in molecular structure %READC-ERR: atom 13 ASP H not found in molecular structure %READC-ERR: atom 13 ASP 2HB not found in molecular structure %READC-ERR: atom 13 ASP 3HB not found in molecular structure %READC-ERR: atom 14 SER H not found in molecular structure %READC-ERR: atom 14 SER 2HB not found in molecular structure %READC-ERR: atom 14 SER 3HB not found in molecular structure %READC-ERR: atom 15 LEU H not found in molecular structure %READC-ERR: atom 15 LEU 2HB not found in molecular structure %READC-ERR: atom 15 LEU 3HB not found in molecular structure %READC-ERR: atom 15 LEU 1HD1 not found in molecular structure %READC-ERR: atom 15 LEU 2HD1 not found in molecular structure %READC-ERR: atom 15 LEU 3HD1 not found in molecular structure %READC-ERR: atom 15 LEU 1HD2 not found in molecular structure %READC-ERR: atom 15 LEU 2HD2 not found in molecular structure %READC-ERR: atom 15 LEU 3HD2 not found in molecular structure %READC-ERR: atom 16 GLN H not found in molecular structure %READC-ERR: atom 16 GLN 2HB not found in molecular structure %READC-ERR: atom 16 GLN 3HB not found in molecular structure %READC-ERR: atom 16 GLN 2HG not found in molecular structure %READC-ERR: atom 16 GLN 3HG not found in molecular structure %READC-ERR: atom 16 GLN 1HE2 not found in molecular structure %READC-ERR: atom 16 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 LEU H not found in molecular structure %READC-ERR: atom 17 LEU 2HB not found in molecular structure %READC-ERR: atom 17 LEU 3HB not found in molecular structure %READC-ERR: atom 17 LEU 1HD1 not found in molecular structure %READC-ERR: atom 17 LEU 2HD1 not found in molecular structure %READC-ERR: atom 17 LEU 3HD1 not found in molecular structure %READC-ERR: atom 17 LEU 1HD2 not found in molecular structure %READC-ERR: atom 17 LEU 2HD2 not found in molecular structure %READC-ERR: atom 17 LEU 3HD2 not found in molecular structure %READC-ERR: atom 18 HIS H not found in molecular structure %READC-ERR: atom 18 HIS 2HB not found in molecular structure %READC-ERR: atom 18 HIS 3HB not found in molecular structure %READC-ERR: atom 19 ASN H not found in molecular structure %READC-ERR: atom 19 ASN 2HB not found in molecular structure %READC-ERR: atom 19 ASN 3HB not found in molecular structure %READC-ERR: atom 19 ASN 1HD2 not found in molecular structure %READC-ERR: atom 19 ASN 2HD2 not found in molecular structure %READC-ERR: atom 20 VAL H not found in molecular structure %READC-ERR: atom 20 VAL 1HG1 not found in molecular structure %READC-ERR: atom 20 VAL 2HG1 not found in molecular structure %READC-ERR: atom 20 VAL 3HG1 not found in molecular structure %READC-ERR: atom 20 VAL 1HG2 not found in molecular structure %READC-ERR: atom 20 VAL 2HG2 not found in molecular structure %READC-ERR: atom 20 VAL 3HG2 not found in molecular structure %READC-ERR: atom 21 PHE H not found in molecular structure %READC-ERR: atom 21 PHE 2HB not found in molecular structure %READC-ERR: atom 21 PHE 3HB not found in molecular structure %READC-ERR: atom 22 VAL H not found in molecular structure %READC-ERR: atom 22 VAL 1HG1 not found in molecular structure %READC-ERR: atom 22 VAL 2HG1 not found in molecular structure %READC-ERR: atom 22 VAL 3HG1 not found in molecular structure %READC-ERR: atom 22 VAL 1HG2 not found in molecular structure %READC-ERR: atom 22 VAL 2HG2 not found in molecular structure %READC-ERR: atom 22 VAL 3HG2 not found in molecular structure %READC-ERR: atom 23 TYR H not found in molecular structure %READC-ERR: atom 23 TYR 2HB not found in molecular structure %READC-ERR: atom 23 TYR 3HB not found in molecular structure %READC-ERR: atom 24 GLY H not found in molecular structure %READC-ERR: atom 24 GLY 2HA not found in molecular structure %READC-ERR: atom 24 GLY 3HA not found in molecular structure %READC-ERR: atom 25 SER H not found in molecular structure %READC-ERR: atom 25 SER 2HB not found in molecular structure %READC-ERR: atom 25 SER 3HB not found in molecular structure %READC-ERR: atom 26 PHE H not found in molecular structure %READC-ERR: atom 26 PHE 2HB not found in molecular structure %READC-ERR: atom 26 PHE 3HB not found in molecular structure %READC-ERR: atom 27 GLN H not found in molecular structure %READC-ERR: atom 27 GLN 2HB not found in molecular structure %READC-ERR: atom 27 GLN 3HB not found in molecular structure %READC-ERR: atom 27 GLN 2HG not found in molecular structure %READC-ERR: atom 27 GLN 3HG not found in molecular structure %READC-ERR: atom 27 GLN 1HE2 not found in molecular structure %READC-ERR: atom 27 GLN 2HE2 not found in molecular structure %READC-ERR: atom 28 ASP H not found in molecular structure %READC-ERR: atom 28 ASP 2HB not found in molecular structure %READC-ERR: atom 28 ASP 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HB not found in molecular structure %READC-ERR: atom 29 PRO 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HG not found in molecular structure %READC-ERR: atom 29 PRO 3HG not found in molecular structure %READC-ERR: atom 29 PRO 2HD not found in molecular structure %READC-ERR: atom 29 PRO 3HD not found in molecular structure %READC-ERR: atom 30 ASP H not found in molecular structure %READC-ERR: atom 30 ASP 2HB not found in molecular structure %READC-ERR: atom 30 ASP 3HB not found in molecular structure %READC-ERR: atom 31 VAL H not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE H not found in molecular structure %READC-ERR: atom 32 ILE 1HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG2 not found in molecular structure %READC-ERR: atom 32 ILE 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG1 not found in molecular structure %READC-ERR: atom 32 ILE 3HG1 not found in molecular structure %READC-ERR: atom 32 ILE 1HD1 not found in molecular structure %READC-ERR: atom 32 ILE 2HD1 not found in molecular structure %READC-ERR: atom 32 ILE 3HD1 not found in molecular structure %READC-ERR: atom 33 ASN H not found in molecular structure %READC-ERR: atom 33 ASN 2HB not found in molecular structure %READC-ERR: atom 33 ASN 3HB not found in molecular structure %READC-ERR: atom 33 ASN 1HD2 not found in molecular structure %READC-ERR: atom 33 ASN 2HD2 not found in molecular structure %READC-ERR: atom 34 VAL H not found in molecular structure %READC-ERR: atom 34 VAL 1HG1 not found in molecular structure %READC-ERR: atom 34 VAL 2HG1 not found in molecular structure %READC-ERR: atom 34 VAL 3HG1 not found in molecular structure %READC-ERR: atom 34 VAL 1HG2 not found in molecular structure %READC-ERR: atom 34 VAL 2HG2 not found in molecular structure %READC-ERR: atom 34 VAL 3HG2 not found in molecular structure %READC-ERR: atom 35 MET H not found in molecular structure %READC-ERR: atom 35 MET 2HB not found in molecular structure %READC-ERR: atom 35 MET 3HB not found in molecular structure %READC-ERR: atom 35 MET 2HG not found in molecular structure %READC-ERR: atom 35 MET 3HG not found in molecular structure %READC-ERR: atom 35 MET 1HE not found in molecular structure %READC-ERR: atom 35 MET 2HE not found in molecular structure %READC-ERR: atom 35 MET 3HE not found in molecular structure %READC-ERR: atom 36 LEU H not found in molecular structure %READC-ERR: atom 36 LEU 2HB not found in molecular structure %READC-ERR: atom 36 LEU 3HB not found in molecular structure %READC-ERR: atom 36 LEU 1HD1 not found in molecular structure %READC-ERR: atom 36 LEU 2HD1 not found in molecular structure %READC-ERR: atom 36 LEU 3HD1 not found in molecular structure %READC-ERR: atom 36 LEU 1HD2 not found in molecular structure %READC-ERR: atom 36 LEU 2HD2 not found in molecular structure %READC-ERR: atom 36 LEU 3HD2 not found in molecular structure %READC-ERR: atom 37 ASP H not found in molecular structure %READC-ERR: atom 37 ASP 2HB not found in molecular structure %READC-ERR: atom 37 ASP 3HB not found in molecular structure %READC-ERR: atom 38 ARG H not found in molecular structure %READC-ERR: atom 38 ARG 2HB not found in molecular structure %READC-ERR: atom 38 ARG 3HB not found in molecular structure %READC-ERR: atom 38 ARG 2HG not found in molecular structure %READC-ERR: atom 38 ARG 3HG not found in molecular structure %READC-ERR: atom 38 ARG 2HD not found in molecular structure %READC-ERR: atom 38 ARG 3HD not found in molecular structure %READC-ERR: atom 38 ARG 1HH1 not found in molecular structure %READC-ERR: atom 38 ARG 2HH1 not found in molecular structure %READC-ERR: atom 38 ARG 1HH2 not found in molecular structure %READC-ERR: atom 38 ARG 2HH2 not found in molecular structure %READC-ERR: atom 39 THR H not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 PRO 2HB not found in molecular structure %READC-ERR: atom 40 PRO 3HB not found in molecular structure %READC-ERR: atom 40 PRO 2HG not found in molecular structure %READC-ERR: atom 40 PRO 3HG not found in molecular structure %READC-ERR: atom 40 PRO 2HD not found in molecular structure %READC-ERR: atom 40 PRO 3HD not found in molecular structure %READC-ERR: atom 41 GLU H not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 42 ILE H not found in molecular structure %READC-ERR: atom 42 ILE 1HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG2 not found in molecular structure %READC-ERR: atom 42 ILE 3HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG1 not found in molecular structure %READC-ERR: atom 42 ILE 3HG1 not found in molecular structure %READC-ERR: atom 42 ILE 1HD1 not found in molecular structure %READC-ERR: atom 42 ILE 2HD1 not found in molecular structure %READC-ERR: atom 42 ILE 3HD1 not found in molecular structure %READC-ERR: atom 43 VAL H not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 44 SER H not found in molecular structure %READC-ERR: atom 44 SER 2HB not found in molecular structure %READC-ERR: atom 44 SER 3HB not found in molecular structure %READC-ERR: atom 45 ALA H not found in molecular structure %READC-ERR: atom 45 ALA 1HB not found in molecular structure %READC-ERR: atom 45 ALA 2HB not found in molecular structure %READC-ERR: atom 45 ALA 3HB not found in molecular structure %READC-ERR: atom 46 THR H not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 LEU H not found in molecular structure %READC-ERR: atom 47 LEU 2HB not found in molecular structure %READC-ERR: atom 47 LEU 3HB not found in molecular structure %READC-ERR: atom 47 LEU 1HD1 not found in molecular structure %READC-ERR: atom 47 LEU 2HD1 not found in molecular structure %READC-ERR: atom 47 LEU 3HD1 not found in molecular structure %READC-ERR: atom 47 LEU 1HD2 not found in molecular structure %READC-ERR: atom 47 LEU 2HD2 not found in molecular structure %READC-ERR: atom 47 LEU 3HD2 not found in molecular structure %READC-ERR: atom 48 PRO 2HB not found in molecular structure %READC-ERR: atom 48 PRO 3HB not found in molecular structure %READC-ERR: atom 48 PRO 2HG not found in molecular structure %READC-ERR: atom 48 PRO 3HG not found in molecular structure %READC-ERR: atom 48 PRO 2HD not found in molecular structure %READC-ERR: atom 48 PRO 3HD not found in molecular structure %READC-ERR: atom 49 GLY H not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY 3HA not found in molecular structure %READC-ERR: atom 50 PHE H not found in molecular structure %READC-ERR: atom 50 PHE 2HB not found in molecular structure %READC-ERR: atom 50 PHE 3HB not found in molecular structure %READC-ERR: atom 51 GLN H not found in molecular structure %READC-ERR: atom 51 GLN 2HB not found in molecular structure %READC-ERR: atom 51 GLN 3HB not found in molecular structure %READC-ERR: atom 51 GLN 2HG not found in molecular structure %READC-ERR: atom 51 GLN 3HG not found in molecular structure %READC-ERR: atom 51 GLN 1HE2 not found in molecular structure %READC-ERR: atom 51 GLN 2HE2 not found in molecular structure %READC-ERR: atom 52 ARG H not found in molecular structure %READC-ERR: atom 52 ARG 2HB not found in molecular structure %READC-ERR: atom 52 ARG 3HB not found in molecular structure %READC-ERR: atom 52 ARG 2HG not found in molecular structure %READC-ERR: atom 52 ARG 3HG not found in molecular structure %READC-ERR: atom 52 ARG 2HD not found in molecular structure %READC-ERR: atom 52 ARG 3HD not found in molecular structure %READC-ERR: atom 52 ARG 1HH1 not found in molecular structure %READC-ERR: atom 52 ARG 2HH1 not found in molecular structure %READC-ERR: atom 52 ARG 1HH2 not found in molecular structure %READC-ERR: atom 52 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 PHE H not found in molecular structure %READC-ERR: atom 53 PHE 2HB not found in molecular structure %READC-ERR: atom 53 PHE 3HB not found in molecular structure %READC-ERR: atom 54 ARG H not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 55 LEU H not found in molecular structure %READC-ERR: atom 55 LEU 2HB not found in molecular structure %READC-ERR: atom 55 LEU 3HB not found in molecular structure %READC-ERR: atom 55 LEU 1HD1 not found in molecular structure %READC-ERR: atom 55 LEU 2HD1 not found in molecular structure %READC-ERR: atom 55 LEU 3HD1 not found in molecular structure %READC-ERR: atom 55 LEU 1HD2 not found in molecular structure %READC-ERR: atom 55 LEU 2HD2 not found in molecular structure %READC-ERR: atom 55 LEU 3HD2 not found in molecular structure %READC-ERR: atom 56 LYS H not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 GLY H not found in molecular structure %READC-ERR: atom 57 GLY 2HA not found in molecular structure %READC-ERR: atom 57 GLY 3HA not found in molecular structure %READC-ERR: atom 58 ARG H not found in molecular structure %READC-ERR: atom 58 ARG 2HB not found in molecular structure %READC-ERR: atom 58 ARG 3HB not found in molecular structure %READC-ERR: atom 58 ARG 2HG not found in molecular structure %READC-ERR: atom 58 ARG 3HG not found in molecular structure %READC-ERR: atom 58 ARG 2HD not found in molecular structure %READC-ERR: atom 58 ARG 3HD not found in molecular structure %READC-ERR: atom 58 ARG 1HH1 not found in molecular structure %READC-ERR: atom 58 ARG 2HH1 not found in molecular structure %READC-ERR: atom 58 ARG 1HH2 not found in molecular structure %READC-ERR: atom 58 ARG 2HH2 not found in molecular structure %READC-ERR: atom 59 LEU H not found in molecular structure %READC-ERR: atom 59 LEU 2HB not found in molecular structure %READC-ERR: atom 59 LEU 3HB not found in molecular structure %READC-ERR: atom 59 LEU 1HD1 not found in molecular structure %READC-ERR: atom 59 LEU 2HD1 not found in molecular structure %READC-ERR: atom 59 LEU 3HD1 not found in molecular structure %READC-ERR: atom 59 LEU 1HD2 not found in molecular structure %READC-ERR: atom 59 LEU 2HD2 not found in molecular structure %READC-ERR: atom 59 LEU 3HD2 not found in molecular structure %READC-ERR: atom 60 TYR H not found in molecular structure %READC-ERR: atom 60 TYR 2HB not found in molecular structure %READC-ERR: atom 60 TYR 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HB not found in molecular structure %READC-ERR: atom 61 PRO 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HG not found in molecular structure %READC-ERR: atom 61 PRO 3HG not found in molecular structure %READC-ERR: atom 61 PRO 2HD not found in molecular structure %READC-ERR: atom 61 PRO 3HD not found in molecular structure %READC-ERR: atom 62 CYS H not found in molecular structure %READC-ERR: atom 62 CYS 2HB not found in molecular structure %READC-ERR: atom 62 CYS 3HB not found in molecular structure %READC-ERR: atom 63 ILE H not found in molecular structure %READC-ERR: atom 63 ILE 1HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG2 not found in molecular structure %READC-ERR: atom 63 ILE 3HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG1 not found in molecular structure %READC-ERR: atom 63 ILE 3HG1 not found in molecular structure %READC-ERR: atom 63 ILE 1HD1 not found in molecular structure %READC-ERR: atom 63 ILE 2HD1 not found in molecular structure %READC-ERR: atom 63 ILE 3HD1 not found in molecular structure %READC-ERR: atom 64 VAL H not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 PRO 2HB not found in molecular structure %READC-ERR: atom 65 PRO 3HB not found in molecular structure %READC-ERR: atom 65 PRO 2HG not found in molecular structure %READC-ERR: atom 65 PRO 3HG not found in molecular structure %READC-ERR: atom 65 PRO 2HD not found in molecular structure %READC-ERR: atom 65 PRO 3HD not found in molecular structure %READC-ERR: atom 66 SER H not found in molecular structure %READC-ERR: atom 66 SER 2HB not found in molecular structure %READC-ERR: atom 66 SER 3HB not found in molecular structure %READC-ERR: atom 67 GLU H not found in molecular structure %READC-ERR: atom 67 GLU 2HB not found in molecular structure %READC-ERR: atom 67 GLU 3HB not found in molecular structure %READC-ERR: atom 67 GLU 2HG not found in molecular structure %READC-ERR: atom 67 GLU 3HG not found in molecular structure %READC-ERR: atom 68 LYS H not found in molecular structure %READC-ERR: atom 68 LYS 2HB not found in molecular structure %READC-ERR: atom 68 LYS 3HB not found in molecular structure %READC-ERR: atom 68 LYS 2HG not found in molecular structure %READC-ERR: atom 68 LYS 3HG not found in molecular structure %READC-ERR: atom 68 LYS 2HD not found in molecular structure %READC-ERR: atom 68 LYS 3HD not found in molecular structure %READC-ERR: atom 68 LYS 2HE not found in molecular structure %READC-ERR: atom 68 LYS 3HE not found in molecular structure %READC-ERR: atom 68 LYS 1HZ not found in molecular structure %READC-ERR: atom 68 LYS 2HZ not found in molecular structure %READC-ERR: atom 68 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 GLY H not found in molecular structure %READC-ERR: atom 69 GLY 2HA not found in molecular structure %READC-ERR: atom 69 GLY 3HA not found in molecular structure %READC-ERR: atom 70 GLU H not found in molecular structure %READC-ERR: atom 70 GLU 2HB not found in molecular structure %READC-ERR: atom 70 GLU 3HB not found in molecular structure %READC-ERR: atom 70 GLU 2HG not found in molecular structure %READC-ERR: atom 70 GLU 3HG not found in molecular structure %READC-ERR: atom 71 VAL H not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 72 HIS H not found in molecular structure %READC-ERR: atom 72 HIS 2HB not found in molecular structure %READC-ERR: atom 72 HIS 3HB not found in molecular structure %READC-ERR: atom 73 GLY H not found in molecular structure %READC-ERR: atom 73 GLY 2HA not found in molecular structure %READC-ERR: atom 73 GLY 3HA not found in molecular structure %READC-ERR: atom 74 LYS H not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 75 VAL H not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 76 LEU H not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 77 MET H not found in molecular structure %READC-ERR: atom 77 MET 2HB not found in molecular structure %READC-ERR: atom 77 MET 3HB not found in molecular structure %READC-ERR: atom 77 MET 2HG not found in molecular structure %READC-ERR: atom 77 MET 3HG not found in molecular structure %READC-ERR: atom 77 MET 1HE not found in molecular structure %READC-ERR: atom 77 MET 2HE not found in molecular structure %READC-ERR: atom 77 MET 3HE not found in molecular structure %READC-ERR: atom 78 GLY H not found in molecular structure %READC-ERR: atom 78 GLY 2HA not found in molecular structure %READC-ERR: atom 78 GLY 3HA not found in molecular structure %READC-ERR: atom 79 VAL H not found in molecular structure %READC-ERR: atom 79 VAL 1HG1 not found in molecular structure %READC-ERR: atom 79 VAL 2HG1 not found in molecular structure %READC-ERR: atom 79 VAL 3HG1 not found in molecular structure %READC-ERR: atom 79 VAL 1HG2 not found in molecular structure %READC-ERR: atom 79 VAL 2HG2 not found in molecular structure %READC-ERR: atom 79 VAL 3HG2 not found in molecular structure %READC-ERR: atom 80 THR H not found in molecular structure %READC-ERR: atom 80 THR 1HG2 not found in molecular structure %READC-ERR: atom 80 THR 2HG2 not found in molecular structure %READC-ERR: atom 80 THR 3HG2 not found in molecular structure %READC-ERR: atom 81 SER H not found in molecular structure %READC-ERR: atom 81 SER 2HB not found in molecular structure %READC-ERR: atom 81 SER 3HB not found in molecular structure %READC-ERR: atom 82 ASP H not found in molecular structure %READC-ERR: atom 82 ASP 2HB not found in molecular structure %READC-ERR: atom 82 ASP 3HB not found in molecular structure %READC-ERR: atom 83 GLU H not found in molecular structure %READC-ERR: atom 83 GLU 2HB not found in molecular structure %READC-ERR: atom 83 GLU 3HB not found in molecular structure %READC-ERR: atom 83 GLU 2HG not found in molecular structure %READC-ERR: atom 83 GLU 3HG not found in molecular structure %READC-ERR: atom 84 LEU H not found in molecular structure %READC-ERR: atom 84 LEU 2HB not found in molecular structure %READC-ERR: atom 84 LEU 3HB not found in molecular structure %READC-ERR: atom 84 LEU 1HD1 not found in molecular structure %READC-ERR: atom 84 LEU 2HD1 not found in molecular structure %READC-ERR: atom 84 LEU 3HD1 not found in molecular structure %READC-ERR: atom 84 LEU 1HD2 not found in molecular structure %READC-ERR: atom 84 LEU 2HD2 not found in molecular structure %READC-ERR: atom 84 LEU 3HD2 not found in molecular structure %READC-ERR: atom 85 GLU H not found in molecular structure %READC-ERR: atom 85 GLU 2HB not found in molecular structure %READC-ERR: atom 85 GLU 3HB not found in molecular structure %READC-ERR: atom 85 GLU 2HG not found in molecular structure %READC-ERR: atom 85 GLU 3HG not found in molecular structure %READC-ERR: atom 86 ASN H not found in molecular structure %READC-ERR: atom 86 ASN 2HB not found in molecular structure %READC-ERR: atom 86 ASN 3HB not found in molecular structure %READC-ERR: atom 86 ASN 1HD2 not found in molecular structure %READC-ERR: atom 86 ASN 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU H not found in molecular structure %READC-ERR: atom 87 LEU 2HB not found in molecular structure %READC-ERR: atom 87 LEU 3HB not found in molecular structure %READC-ERR: atom 87 LEU 1HD1 not found in molecular structure %READC-ERR: atom 87 LEU 2HD1 not found in molecular structure %READC-ERR: atom 87 LEU 3HD1 not found in molecular structure %READC-ERR: atom 87 LEU 1HD2 not found in molecular structure %READC-ERR: atom 87 LEU 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU 3HD2 not found in molecular structure %READC-ERR: atom 88 ASP H not found in molecular structure %READC-ERR: atom 88 ASP 2HB not found in molecular structure %READC-ERR: atom 88 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ALA H not found in molecular structure %READC-ERR: atom 89 ALA 1HB not found in molecular structure %READC-ERR: atom 89 ALA 2HB not found in molecular structure %READC-ERR: atom 89 ALA 3HB not found in molecular structure %READC-ERR: atom 90 VAL H not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 91 GLU H not found in molecular structure %READC-ERR: atom 91 GLU 2HB not found in molecular structure %READC-ERR: atom 91 GLU 3HB not found in molecular structure %READC-ERR: atom 91 GLU 2HG not found in molecular structure %READC-ERR: atom 91 GLU 3HG not found in molecular structure %READC-ERR: atom 92 GLY H not found in molecular structure %READC-ERR: atom 92 GLY 2HA not found in molecular structure %READC-ERR: atom 92 GLY 3HA not found in molecular structure %READC-ERR: atom 93 ASN H not found in molecular structure %READC-ERR: atom 93 ASN 2HB not found in molecular structure %READC-ERR: atom 93 ASN 3HB not found in molecular structure %READC-ERR: atom 93 ASN 1HD2 not found in molecular structure %READC-ERR: atom 93 ASN 2HD2 not found in molecular structure %READC-ERR: atom 94 GLU H not found in molecular structure %READC-ERR: atom 94 GLU 2HB not found in molecular structure %READC-ERR: atom 94 GLU 3HB not found in molecular structure %READC-ERR: atom 94 GLU 2HG not found in molecular structure %READC-ERR: atom 94 GLU 3HG not found in molecular structure %READC-ERR: atom 95 TYR H not found in molecular structure %READC-ERR: atom 95 TYR 2HB not found in molecular structure %READC-ERR: atom 95 TYR 3HB not found in molecular structure %READC-ERR: atom 96 GLU H not found in molecular structure %READC-ERR: atom 96 GLU 2HB not found in molecular structure %READC-ERR: atom 96 GLU 3HB not found in molecular structure %READC-ERR: atom 96 GLU 2HG not found in molecular structure %READC-ERR: atom 96 GLU 3HG not found in molecular structure %READC-ERR: atom 97 ARG H not found in molecular structure %READC-ERR: atom 97 ARG 2HB not found in molecular structure %READC-ERR: atom 97 ARG 3HB not found in molecular structure %READC-ERR: atom 97 ARG 2HG not found in molecular structure %READC-ERR: atom 97 ARG 3HG not found in molecular structure %READC-ERR: atom 97 ARG 2HD not found in molecular structure %READC-ERR: atom 97 ARG 3HD not found in molecular structure %READC-ERR: atom 97 ARG 1HH1 not found in molecular structure %READC-ERR: atom 97 ARG 2HH1 not found in molecular structure %READC-ERR: atom 97 ARG 1HH2 not found in molecular structure %READC-ERR: atom 97 ARG 2HH2 not found in molecular structure %READC-ERR: atom 98 VAL H not found in molecular structure %READC-ERR: atom 98 VAL 1HG1 not found in molecular structure %READC-ERR: atom 98 VAL 2HG1 not found in molecular structure %READC-ERR: atom 98 VAL 3HG1 not found in molecular structure %READC-ERR: atom 98 VAL 1HG2 not found in molecular structure %READC-ERR: atom 98 VAL 2HG2 not found in molecular structure %READC-ERR: atom 98 VAL 3HG2 not found in molecular structure %READC-ERR: atom 99 THR H not found in molecular structure %READC-ERR: atom 99 THR 1HG2 not found in molecular structure %READC-ERR: atom 99 THR 2HG2 not found in molecular structure %READC-ERR: atom 99 THR 3HG2 not found in molecular structure %READC-ERR: atom 100 VAL H not found in molecular structure %READC-ERR: atom 100 VAL 1HG1 not found in molecular structure %READC-ERR: atom 100 VAL 2HG1 not found in molecular structure %READC-ERR: atom 100 VAL 3HG1 not found in molecular structure %READC-ERR: atom 100 VAL 1HG2 not found in molecular structure %READC-ERR: atom 100 VAL 2HG2 not found in molecular structure %READC-ERR: atom 100 VAL 3HG2 not found in molecular structure %READC-ERR: atom 101 GLY H not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY 3HA not found in molecular structure %READC-ERR: atom 102 ILE H not found in molecular structure %READC-ERR: atom 102 ILE 1HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG2 not found in molecular structure %READC-ERR: atom 102 ILE 3HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG1 not found in molecular structure %READC-ERR: atom 102 ILE 3HG1 not found in molecular structure %READC-ERR: atom 102 ILE 1HD1 not found in molecular structure %READC-ERR: atom 102 ILE 2HD1 not found in molecular structure %READC-ERR: atom 102 ILE 3HD1 not found in molecular structure %READC-ERR: atom 103 VAL H not found in molecular structure %READC-ERR: atom 103 VAL 1HG1 not found in molecular structure %READC-ERR: atom 103 VAL 2HG1 not found in molecular structure %READC-ERR: atom 103 VAL 3HG1 not found in molecular structure %READC-ERR: atom 103 VAL 1HG2 not found in molecular structure %READC-ERR: atom 103 VAL 2HG2 not found in molecular structure %READC-ERR: atom 103 VAL 3HG2 not found in molecular structure %READC-ERR: atom 104 ARG H not found in molecular structure %READC-ERR: atom 104 ARG 2HB not found in molecular structure %READC-ERR: atom 104 ARG 3HB not found in molecular structure %READC-ERR: atom 104 ARG 2HG not found in molecular structure %READC-ERR: atom 104 ARG 3HG not found in molecular structure %READC-ERR: atom 104 ARG 2HD not found in molecular structure %READC-ERR: atom 104 ARG 3HD not found in molecular structure %READC-ERR: atom 104 ARG 1HH1 not found in molecular structure %READC-ERR: atom 104 ARG 2HH1 not found in molecular structure %READC-ERR: atom 104 ARG 1HH2 not found in molecular structure %READC-ERR: atom 104 ARG 2HH2 not found in molecular structure %READC-ERR: atom 105 GLU H not found in molecular structure %READC-ERR: atom 105 GLU 2HB not found in molecular structure %READC-ERR: atom 105 GLU 3HB not found in molecular structure %READC-ERR: atom 105 GLU 2HG not found in molecular structure %READC-ERR: atom 105 GLU 3HG not found in molecular structure %READC-ERR: atom 106 ASP H not found in molecular structure %READC-ERR: atom 106 ASP 2HB not found in molecular structure %READC-ERR: atom 106 ASP 3HB not found in molecular structure %READC-ERR: atom 107 ASN H not found in molecular structure %READC-ERR: atom 107 ASN 2HB not found in molecular structure %READC-ERR: atom 107 ASN 3HB not found in molecular structure %READC-ERR: atom 107 ASN 1HD2 not found in molecular structure %READC-ERR: atom 107 ASN 2HD2 not found in molecular structure %READC-ERR: atom 108 SER H not found in molecular structure %READC-ERR: atom 108 SER 2HB not found in molecular structure %READC-ERR: atom 108 SER 3HB not found in molecular structure %READC-ERR: atom 109 GLU H not found in molecular structure %READC-ERR: atom 109 GLU 2HB not found in molecular structure %READC-ERR: atom 109 GLU 3HB not found in molecular structure %READC-ERR: atom 109 GLU 2HG not found in molecular structure %READC-ERR: atom 109 GLU 3HG not found in molecular structure %READC-ERR: atom 110 LYS H not found in molecular structure %READC-ERR: atom 110 LYS 2HB not found in molecular structure %READC-ERR: atom 110 LYS 3HB not found in molecular structure %READC-ERR: atom 110 LYS 2HG not found in molecular structure %READC-ERR: atom 110 LYS 3HG not found in molecular structure %READC-ERR: atom 110 LYS 2HD not found in molecular structure %READC-ERR: atom 110 LYS 3HD not found in molecular structure %READC-ERR: atom 110 LYS 2HE not found in molecular structure %READC-ERR: atom 110 LYS 3HE not found in molecular structure %READC-ERR: atom 110 LYS 1HZ not found in molecular structure %READC-ERR: atom 110 LYS 2HZ not found in molecular structure %READC-ERR: atom 110 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 MET H not found in molecular structure %READC-ERR: atom 111 MET 2HB not found in molecular structure %READC-ERR: atom 111 MET 3HB not found in molecular structure %READC-ERR: atom 111 MET 2HG not found in molecular structure %READC-ERR: atom 111 MET 3HG not found in molecular structure %READC-ERR: atom 111 MET 1HE not found in molecular structure %READC-ERR: atom 111 MET 2HE not found in molecular structure %READC-ERR: atom 111 MET 3HE not found in molecular structure %READC-ERR: atom 112 ALA H not found in molecular structure %READC-ERR: atom 112 ALA 1HB not found in molecular structure %READC-ERR: atom 112 ALA 2HB not found in molecular structure %READC-ERR: atom 112 ALA 3HB not found in molecular structure %READC-ERR: atom 113 VAL H not found in molecular structure %READC-ERR: atom 113 VAL 1HG1 not found in molecular structure %READC-ERR: atom 113 VAL 2HG1 not found in molecular structure %READC-ERR: atom 113 VAL 3HG1 not found in molecular structure %READC-ERR: atom 113 VAL 1HG2 not found in molecular structure %READC-ERR: atom 113 VAL 2HG2 not found in molecular structure %READC-ERR: atom 113 VAL 3HG2 not found in molecular structure %READC-ERR: atom 114 LYS H not found in molecular structure %READC-ERR: atom 114 LYS 2HB not found in molecular structure %READC-ERR: atom 114 LYS 3HB not found in molecular structure %READC-ERR: atom 114 LYS 2HG not found in molecular structure %READC-ERR: atom 114 LYS 3HG not found in molecular structure %READC-ERR: atom 114 LYS 2HD not found in molecular structure %READC-ERR: atom 114 LYS 3HD not found in molecular structure %READC-ERR: atom 114 LYS 2HE not found in molecular structure %READC-ERR: atom 114 LYS 3HE not found in molecular structure %READC-ERR: atom 114 LYS 1HZ not found in molecular structure %READC-ERR: atom 114 LYS 2HZ not found in molecular structure %READC-ERR: atom 114 LYS 3HZ not found in molecular structure %READC-ERR: atom 115 THR H not found in molecular structure %READC-ERR: atom 115 THR 1HG2 not found in molecular structure %READC-ERR: atom 115 THR 2HG2 not found in molecular structure %READC-ERR: atom 115 THR 3HG2 not found in molecular structure %READC-ERR: atom 116 TYR H not found in molecular structure %READC-ERR: atom 116 TYR 2HB not found in molecular structure %READC-ERR: atom 116 TYR 3HB not found in molecular structure %READC-ERR: atom 117 MET H not found in molecular structure %READC-ERR: atom 117 MET 2HB not found in molecular structure %READC-ERR: atom 117 MET 3HB not found in molecular structure %READC-ERR: atom 117 MET 2HG not found in molecular structure %READC-ERR: atom 117 MET 3HG not found in molecular structure %READC-ERR: atom 117 MET 1HE not found in molecular structure %READC-ERR: atom 117 MET 2HE not found in molecular structure %READC-ERR: atom 117 MET 3HE not found in molecular structure %READC-ERR: atom 118 TRP H not found in molecular structure %READC-ERR: atom 118 TRP 2HB not found in molecular structure %READC-ERR: atom 118 TRP 3HB not found in molecular structure %READC-ERR: atom 119 ILE H not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ASN H not found in molecular structure %READC-ERR: atom 120 ASN 2HB not found in molecular structure %READC-ERR: atom 120 ASN 3HB not found in molecular structure %READC-ERR: atom 120 ASN 1HD2 not found in molecular structure %READC-ERR: atom 120 ASN 2HD2 not found in molecular structure %READC-ERR: atom 121 LYS H not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 122 ALA H not found in molecular structure %READC-ERR: atom 122 ALA 1HB not found in molecular structure %READC-ERR: atom 122 ALA 2HB not found in molecular structure %READC-ERR: atom 122 ALA 3HB not found in molecular structure %READC-ERR: atom 123 ASP H not found in molecular structure %READC-ERR: atom 123 ASP 2HB not found in molecular structure %READC-ERR: atom 123 ASP 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HB not found in molecular structure %READC-ERR: atom 124 PRO 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HG not found in molecular structure %READC-ERR: atom 124 PRO 3HG not found in molecular structure %READC-ERR: atom 124 PRO 2HD not found in molecular structure %READC-ERR: atom 124 PRO 3HD not found in molecular structure %READC-ERR: atom 125 ASP H not found in molecular structure %READC-ERR: atom 125 ASP 2HB not found in molecular structure %READC-ERR: atom 125 ASP 3HB not found in molecular structure %READC-ERR: atom 126 MET H not found in molecular structure %READC-ERR: atom 126 MET 2HB not found in molecular structure %READC-ERR: atom 126 MET 3HB not found in molecular structure %READC-ERR: atom 126 MET 2HG not found in molecular structure %READC-ERR: atom 126 MET 3HG not found in molecular structure %READC-ERR: atom 126 MET 1HE not found in molecular structure %READC-ERR: atom 126 MET 2HE not found in molecular structure %READC-ERR: atom 126 MET 3HE not found in molecular structure %READC-ERR: atom 127 PHE H not found in molecular structure %READC-ERR: atom 127 PHE 2HB not found in molecular structure %READC-ERR: atom 127 PHE 3HB not found in molecular structure %READC-ERR: atom 128 GLY H not found in molecular structure %READC-ERR: atom 128 GLY 2HA not found in molecular structure %READC-ERR: atom 128 GLY 3HA not found in molecular structure %READC-ERR: atom 129 GLU H not found in molecular structure %READC-ERR: atom 129 GLU 2HB not found in molecular structure %READC-ERR: atom 129 GLU 3HB not found in molecular structure %READC-ERR: atom 129 GLU 2HG not found in molecular structure %READC-ERR: atom 129 GLU 3HG not found in molecular structure %READC-ERR: atom 130 TRP H not found in molecular structure %READC-ERR: atom 130 TRP 2HB not found in molecular structure %READC-ERR: atom 130 TRP 3HB not found in molecular structure %READC-ERR: atom 131 ASN H not found in molecular structure %READC-ERR: atom 131 ASN 2HB not found in molecular structure %READC-ERR: atom 131 ASN 3HB not found in molecular structure %READC-ERR: atom 131 ASN 1HD2 not found in molecular structure %READC-ERR: atom 131 ASN 2HD2 not found in molecular structure %READC-ERR: atom 132 PHE H not found in molecular structure %READC-ERR: atom 132 PHE 2HB not found in molecular structure %READC-ERR: atom 132 PHE 3HB not found in molecular structure %READC-ERR: atom 133 GLU H not found in molecular structure %READC-ERR: atom 133 GLU 2HB not found in molecular structure %READC-ERR: atom 133 GLU 3HB not found in molecular structure %READC-ERR: atom 133 GLU 2HG not found in molecular structure %READC-ERR: atom 133 GLU 3HG not found in molecular structure %READC-ERR: atom 134 GLU H not found in molecular structure %READC-ERR: atom 134 GLU 2HB not found in molecular structure %READC-ERR: atom 134 GLU 3HB not found in molecular structure %READC-ERR: atom 134 GLU 2HG not found in molecular structure %READC-ERR: atom 134 GLU 3HG not found in molecular structure %READC-ERR: atom 135 TRP H not found in molecular structure %READC-ERR: atom 135 TRP 2HB not found in molecular structure %READC-ERR: atom 135 TRP 3HB not found in molecular structure %READC-ERR: atom 136 LYS H not found in molecular structure %READC-ERR: atom 136 LYS 2HB not found in molecular structure %READC-ERR: atom 136 LYS 3HB not found in molecular structure %READC-ERR: atom 136 LYS 2HG not found in molecular structure %READC-ERR: atom 136 LYS 3HG not found in molecular structure %READC-ERR: atom 136 LYS 2HD not found in molecular structure %READC-ERR: atom 136 LYS 3HD not found in molecular structure %READC-ERR: atom 136 LYS 2HE not found in molecular structure %READC-ERR: atom 136 LYS 3HE not found in molecular structure %READC-ERR: atom 136 LYS 1HZ not found in molecular structure %READC-ERR: atom 136 LYS 2HZ not found in molecular structure %READC-ERR: atom 136 LYS 3HZ not found in molecular structure %READC-ERR: atom 137 ARG H not found in molecular structure %READC-ERR: atom 137 ARG 2HB not found in molecular structure %READC-ERR: atom 137 ARG 3HB not found in molecular structure %READC-ERR: atom 137 ARG 2HG not found in molecular structure %READC-ERR: atom 137 ARG 3HG not found in molecular structure %READC-ERR: atom 137 ARG 2HD not found in molecular structure %READC-ERR: atom 137 ARG 3HD not found in molecular structure %READC-ERR: atom 137 ARG 1HH1 not found in molecular structure %READC-ERR: atom 137 ARG 2HH1 not found in molecular structure %READC-ERR: atom 137 ARG 1HH2 not found in molecular structure %READC-ERR: atom 137 ARG 2HH2 not found in molecular structure %READC-ERR: atom 138 LEU H not found in molecular structure %READC-ERR: atom 138 LEU 2HB not found in molecular structure %READC-ERR: atom 138 LEU 3HB not found in molecular structure %READC-ERR: atom 138 LEU 1HD1 not found in molecular structure %READC-ERR: atom 138 LEU 2HD1 not found in molecular structure %READC-ERR: atom 138 LEU 3HD1 not found in molecular structure %READC-ERR: atom 138 LEU 1HD2 not found in molecular structure %READC-ERR: atom 138 LEU 2HD2 not found in molecular structure %READC-ERR: atom 138 LEU 3HD2 not found in molecular structure %READC-ERR: atom 139 HIS H not found in molecular structure %READC-ERR: atom 139 HIS 2HB not found in molecular structure %READC-ERR: atom 139 HIS 3HB not found in molecular structure %READC-ERR: atom 140 LYS H not found in molecular structure %READC-ERR: atom 140 LYS 2HB not found in molecular structure %READC-ERR: atom 140 LYS 3HB not found in molecular structure %READC-ERR: atom 140 LYS 2HG not found in molecular structure %READC-ERR: atom 140 LYS 3HG not found in molecular structure %READC-ERR: atom 140 LYS 2HD not found in molecular structure %READC-ERR: atom 140 LYS 3HD not found in molecular structure %READC-ERR: atom 140 LYS 2HE not found in molecular structure %READC-ERR: atom 140 LYS 3HE not found in molecular structure %READC-ERR: atom 140 LYS 1HZ not found in molecular structure %READC-ERR: atom 140 LYS 2HZ not found in molecular structure %READC-ERR: atom 140 LYS 3HZ not found in molecular structure %READC-ERR: atom 141 LYS H not found in molecular structure %READC-ERR: atom 141 LYS 2HB not found in molecular structure %READC-ERR: atom 141 LYS 3HB not found in molecular structure %READC-ERR: atom 141 LYS 2HG not found in molecular structure %READC-ERR: atom 141 LYS 3HG not found in molecular structure %READC-ERR: atom 141 LYS 2HD not found in molecular structure %READC-ERR: atom 141 LYS 3HD not found in molecular structure %READC-ERR: atom 141 LYS 2HE not found in molecular structure %READC-ERR: atom 141 LYS 3HE not found in molecular structure %READC-ERR: atom 141 LYS 1HZ not found in molecular structure %READC-ERR: atom 141 LYS 2HZ not found in molecular structure %READC-ERR: atom 141 LYS 3HZ not found in molecular structure %READC-ERR: atom 142 LYS H not found in molecular structure %READC-ERR: atom 142 LYS 2HB not found in molecular structure %READC-ERR: atom 142 LYS 3HB not found in molecular structure %READC-ERR: atom 142 LYS 2HG not found in molecular structure %READC-ERR: atom 142 LYS 3HG not found in molecular structure %READC-ERR: atom 142 LYS 2HD not found in molecular structure %READC-ERR: atom 142 LYS 3HD not found in molecular structure %READC-ERR: atom 142 LYS 2HE not found in molecular structure %READC-ERR: atom 142 LYS 3HE not found in molecular structure %READC-ERR: atom 142 LYS 1HZ not found in molecular structure %READC-ERR: atom 142 LYS 2HZ not found in molecular structure %READC-ERR: atom 142 LYS 3HZ not found in molecular structure %READC-ERR: atom 143 PHE H not found in molecular structure %READC-ERR: atom 143 PHE 2HB not found in molecular structure %READC-ERR: atom 143 PHE 3HB not found in molecular structure %READC-ERR: atom 144 ILE H not found in molecular structure %READC-ERR: atom 144 ILE 1HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG2 not found in molecular structure %READC-ERR: atom 144 ILE 3HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG1 not found in molecular structure %READC-ERR: atom 144 ILE 3HG1 not found in molecular structure %READC-ERR: atom 144 ILE 1HD1 not found in molecular structure %READC-ERR: atom 144 ILE 2HD1 not found in molecular structure %READC-ERR: atom 144 ILE 3HD1 not found in molecular structure %READC-ERR: atom 145 GLU H not found in molecular structure %READC-ERR: atom 145 GLU 2HB not found in molecular structure %READC-ERR: atom 145 GLU 3HB not found in molecular structure %READC-ERR: atom 145 GLU 2HG not found in molecular structure %READC-ERR: atom 145 GLU 3HG not found in molecular structure %READC-ERR: atom 146 THR H not found in molecular structure %READC-ERR: atom 146 THR 1HG2 not found in molecular structure %READC-ERR: atom 146 THR 2HG2 not found in molecular structure %READC-ERR: atom 146 THR 3HG2 not found in molecular structure %READC-ERR: atom 147 PHE H not found in molecular structure %READC-ERR: atom 147 PHE 2HB not found in molecular structure %READC-ERR: atom 147 PHE 3HB not found in molecular structure %READC-ERR: atom 148 LYS H not found in molecular structure %READC-ERR: atom 148 LYS 2HB not found in molecular structure %READC-ERR: atom 148 LYS 3HB not found in molecular structure %READC-ERR: atom 148 LYS 2HG not found in molecular structure %READC-ERR: atom 148 LYS 3HG not found in molecular structure %READC-ERR: atom 148 LYS 2HD not found in molecular structure %READC-ERR: atom 148 LYS 3HD not found in molecular structure %READC-ERR: atom 148 LYS 2HE not found in molecular structure %READC-ERR: atom 148 LYS 3HE not found in molecular structure %READC-ERR: atom 148 LYS 1HZ not found in molecular structure %READC-ERR: atom 148 LYS 2HZ not found in molecular structure %READC-ERR: atom 148 LYS 3HZ not found in molecular structure %READC-ERR: atom 149 LYS H not found in molecular structure %READC-ERR: atom 149 LYS 2HB not found in molecular structure %READC-ERR: atom 149 LYS 3HB not found in molecular structure %READC-ERR: atom 149 LYS 2HG not found in molecular structure %READC-ERR: atom 149 LYS 3HG not found in molecular structure %READC-ERR: atom 149 LYS 2HD not found in molecular structure %READC-ERR: atom 149 LYS 3HD not found in molecular structure %READC-ERR: atom 149 LYS 2HE not found in molecular structure %READC-ERR: atom 149 LYS 3HE not found in molecular structure %READC-ERR: atom 149 LYS 1HZ not found in molecular structure %READC-ERR: atom 149 LYS 2HZ not found in molecular structure %READC-ERR: atom 149 LYS 3HZ not found in molecular structure %READC-ERR: atom 150 ILE H not found in molecular structure %READC-ERR: atom 150 ILE 1HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG2 not found in molecular structure %READC-ERR: atom 150 ILE 3HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG1 not found in molecular structure %READC-ERR: atom 150 ILE 3HG1 not found in molecular structure %READC-ERR: atom 150 ILE 1HD1 not found in molecular structure %READC-ERR: atom 150 ILE 2HD1 not found in molecular structure %READC-ERR: atom 150 ILE 3HD1 not found in molecular structure %READC-ERR: atom 151 MET H not found in molecular structure %READC-ERR: atom 151 MET 2HB not found in molecular structure %READC-ERR: atom 151 MET 3HB not found in molecular structure %READC-ERR: atom 151 MET 2HG not found in molecular structure %READC-ERR: atom 151 MET 3HG not found in molecular structure %READC-ERR: atom 151 MET 1HE not found in molecular structure %READC-ERR: atom 151 MET 2HE not found in molecular structure %READC-ERR: atom 151 MET 3HE not found in molecular structure %READC-ERR: atom 152 GLU H not found in molecular structure %READC-ERR: atom 152 GLU 2HB not found in molecular structure %READC-ERR: atom 152 GLU 3HB not found in molecular structure %READC-ERR: atom 152 GLU 2HG not found in molecular structure %READC-ERR: atom 152 GLU 3HG not found in molecular structure %READC-ERR: atom 153 CYS H not found in molecular structure %READC-ERR: atom 153 CYS 2HB not found in molecular structure %READC-ERR: atom 153 CYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS H not found in molecular structure %READC-ERR: atom 154 LYS 2HB not found in molecular structure %READC-ERR: atom 154 LYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS 2HG not found in molecular structure %READC-ERR: atom 154 LYS 3HG not found in molecular structure %READC-ERR: atom 154 LYS 2HD not found in molecular structure %READC-ERR: atom 154 LYS 3HD not found in molecular structure %READC-ERR: atom 154 LYS 2HE not found in molecular structure %READC-ERR: atom 154 LYS 3HE not found in molecular structure %READC-ERR: atom 154 LYS 1HZ not found in molecular structure %READC-ERR: atom 154 LYS 2HZ not found in molecular structure %READC-ERR: atom 154 LYS 3HZ not found in molecular structure %READC-ERR: atom 155 LYS H not found in molecular structure %READC-ERR: atom 155 LYS 2HB not found in molecular structure %READC-ERR: atom 155 LYS 3HB not found in molecular structure %READC-ERR: atom 155 LYS 2HG not found in molecular structure %READC-ERR: atom 155 LYS 3HG not found in molecular structure %READC-ERR: atom 155 LYS 2HD not found in molecular structure %READC-ERR: atom 155 LYS 3HD not found in molecular structure %READC-ERR: atom 155 LYS 2HE not found in molecular structure %READC-ERR: atom 155 LYS 3HE not found in molecular structure %READC-ERR: atom 155 LYS 1HZ not found in molecular structure %READC-ERR: atom 155 LYS 2HZ not found in molecular structure %READC-ERR: atom 155 LYS 3HZ not found in molecular structure %READC-ERR: atom 156 LYS H not found in molecular structure %READC-ERR: atom 156 LYS 2HB not found in molecular structure %READC-ERR: atom 156 LYS 3HB not found in molecular structure %READC-ERR: atom 156 LYS 2HG not found in molecular structure %READC-ERR: atom 156 LYS 3HG not found in molecular structure %READC-ERR: atom 156 LYS 2HD not found in molecular structure %READC-ERR: atom 156 LYS 3HD not found in molecular structure %READC-ERR: atom 156 LYS 2HE not found in molecular structure %READC-ERR: atom 156 LYS 3HE not found in molecular structure %READC-ERR: atom 156 LYS 1HZ not found in molecular structure %READC-ERR: atom 156 LYS 2HZ not found in molecular structure %READC-ERR: atom 156 LYS 3HZ not found in molecular structure %READC-ERR: atom 157 PRO 2HB not found in molecular structure %READC-ERR: atom 157 PRO 3HB not found in molecular structure %READC-ERR: atom 157 PRO 2HG not found in molecular structure %READC-ERR: atom 157 PRO 3HG not found in molecular structure %READC-ERR: atom 157 PRO 2HD not found in molecular structure %READC-ERR: atom 157 PRO 3HD not found in molecular structure %READC-ERR: atom 158 GLN H not found in molecular structure %READC-ERR: atom 158 GLN 2HB not found in molecular structure %READC-ERR: atom 158 GLN 3HB not found in molecular structure %READC-ERR: atom 158 GLN 2HG not found in molecular structure %READC-ERR: atom 158 GLN 3HG not found in molecular structure %READC-ERR: atom 158 GLN 1HE2 not found in molecular structure %READC-ERR: atom 158 GLN 2HE2 not found in molecular structure %READC-ERR: atom 159 GLY H not found in molecular structure %READC-ERR: atom 159 GLY 2HA not found in molecular structure %READC-ERR: atom 159 GLY 3HA not found in molecular structure %READC-ERR: atom 160 GLN H not found in molecular structure %READC-ERR: atom 160 GLN 2HB not found in molecular structure %READC-ERR: atom 160 GLN 3HB not found in molecular structure %READC-ERR: atom 160 GLN 2HG not found in molecular structure %READC-ERR: atom 160 GLN 3HG not found in molecular structure %READC-ERR: atom 160 GLN 1HE2 not found in molecular structure %READC-ERR: atom 160 GLN 2HE2 not found in molecular structure %READC-ERR: atom 161 GLY H not found in molecular structure %READC-ERR: atom 161 GLY 2HA not found in molecular structure %READC-ERR: atom 161 GLY 3HA not found in molecular structure %READC-ERR: atom 162 ASN H not found in molecular structure %READC-ERR: atom 162 ASN 2HB not found in molecular structure %READC-ERR: atom 162 ASN 3HB not found in molecular structure %READC-ERR: atom 162 ASN 1HD2 not found in molecular structure %READC-ERR: atom 162 ASN 2HD2 not found in molecular structure %READC-ERR: atom 163 ASP H not found in molecular structure %READC-ERR: atom 163 ASP 2HB not found in molecular structure %READC-ERR: atom 163 ASP 3HB not found in molecular structure %READC-ERR: atom 164 ASP H not found in molecular structure %READC-ERR: atom 164 ASP 2HB not found in molecular structure %READC-ERR: atom 164 ASP 3HB not found in molecular structure %READC-ERR: atom 165 ILE H not found in molecular structure %READC-ERR: atom 165 ILE 1HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG2 not found in molecular structure %READC-ERR: atom 165 ILE 3HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG1 not found in molecular structure %READC-ERR: atom 165 ILE 3HG1 not found in molecular structure %READC-ERR: atom 165 ILE 1HD1 not found in molecular structure %READC-ERR: atom 165 ILE 2HD1 not found in molecular structure %READC-ERR: atom 165 ILE 3HD1 not found in molecular structure %READC-ERR: atom 166 SER H not found in molecular structure %READC-ERR: atom 166 SER 2HB not found in molecular structure %READC-ERR: atom 166 SER 3HB not found in molecular structure %READC-ERR: atom 167 HIS H not found in molecular structure %READC-ERR: atom 167 HIS 2HB not found in molecular structure %READC-ERR: atom 167 HIS 3HB not found in molecular structure %READC-ERR: atom 168 VAL H not found in molecular structure %READC-ERR: atom 168 VAL 1HG1 not found in molecular structure %READC-ERR: atom 168 VAL 2HG1 not found in molecular structure %READC-ERR: atom 168 VAL 3HG1 not found in molecular structure %READC-ERR: atom 168 VAL 1HG2 not found in molecular structure %READC-ERR: atom 168 VAL 2HG2 not found in molecular structure %READC-ERR: atom 168 VAL 3HG2 not found in molecular structure %READC-ERR: atom 169 LEU H not found in molecular structure %READC-ERR: atom 169 LEU 2HB not found in molecular structure %READC-ERR: atom 169 LEU 3HB not found in molecular structure %READC-ERR: atom 169 LEU 1HD1 not found in molecular structure %READC-ERR: atom 169 LEU 2HD1 not found in molecular structure %READC-ERR: atom 169 LEU 3HD1 not found in molecular structure %READC-ERR: atom 169 LEU 1HD2 not found in molecular structure %READC-ERR: atom 169 LEU 2HD2 not found in molecular structure %READC-ERR: atom 169 LEU 3HD2 not found in molecular structure %READC-ERR: atom 170 ARG H not found in molecular structure %READC-ERR: atom 170 ARG 2HB not found in molecular structure %READC-ERR: atom 170 ARG 3HB not found in molecular structure %READC-ERR: atom 170 ARG 2HG not found in molecular structure %READC-ERR: atom 170 ARG 3HG not found in molecular structure %READC-ERR: atom 170 ARG 2HD not found in molecular structure %READC-ERR: atom 170 ARG 3HD not found in molecular structure %READC-ERR: atom 170 ARG 1HH1 not found in molecular structure %READC-ERR: atom 170 ARG 2HH1 not found in molecular structure %READC-ERR: atom 170 ARG 1HH2 not found in molecular structure %READC-ERR: atom 170 ARG 2HH2 not found in molecular structure %READC-ERR: atom 171 GLU H not found in molecular structure %READC-ERR: atom 171 GLU 2HB not found in molecular structure %READC-ERR: atom 171 GLU 3HB not found in molecular structure %READC-ERR: atom 171 GLU 2HG not found in molecular structure %READC-ERR: atom 171 GLU 3HG not found in molecular structure %READC-ERR: atom 172 ASP H not found in molecular structure %READC-ERR: atom 172 ASP 2HB not found in molecular structure %READC-ERR: atom 172 ASP 3HB not found in molecular structure %READC-ERR: atom 173 GLN H not found in molecular structure %READC-ERR: atom 173 GLN 2HB not found in molecular structure %READC-ERR: atom 173 GLN 3HB not found in molecular structure %READC-ERR: atom 173 GLN 2HG not found in molecular structure %READC-ERR: atom 173 GLN 3HG not found in molecular structure %READC-ERR: atom 173 GLN 1HE2 not found in molecular structure %READC-ERR: atom 173 GLN 2HE2 not found in molecular structure %READC-ERR: atom 173 GLN O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 1383.00 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 1411 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 1383.00 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 173 atoms have been selected out of 2794 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 43.189000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.1890 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -31.014500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -31.0145 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -57.519250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -57.5192 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 10.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 42.305143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.3051 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -26.264643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.2646 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -56.458857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -56.4589 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 43.027929 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.0279 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -28.157786 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -28.1578 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -51.325071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -51.3251 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 46.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 38.238857 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.2389 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -24.237071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.2371 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -51.036857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -51.0369 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 64.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 41.292643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2926 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -19.788500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.7885 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -49.984929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -49.9849 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 82.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 36.462429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.4624 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -19.851786 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.8518 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -46.900857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -46.9009 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 100.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 39.827571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.8276 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -15.706571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.7066 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -45.229929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -45.2299 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 118.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 33.875800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.8758 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.362900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3629 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -43.011500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -43.0115 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 137.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 35.133900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.1339 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.368200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.3682 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -41.909800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -41.9098 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 152.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 31.492250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.4923 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.567375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.56738 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -38.897875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -38.8979 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 163.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 30.695000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.6950 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.915125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.91513 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -37.784250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.7843 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 174.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 30.729000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7290 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -6.662000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.66200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -33.039875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.0399 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 185.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 27.557222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.5572 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.153778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.15378 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -33.767333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.7673 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 197.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 30.151750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.1518 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -3.647875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.64788 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -29.999000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.9990 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 208.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 30.328900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.3289 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.069300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.06930 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -28.932100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.9321 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 30.688800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.6888 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.631100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.63110 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.333200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.3332 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 35.169900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.1699 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.644400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.644400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.324400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.3244 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 263.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 36.054786 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.0548 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -4.463643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.46364 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -22.390929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.3909 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 281.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.889222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.8892 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.589111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.58911 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.494444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.4944 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 295.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.812111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.8121 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.342667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.34267 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.654111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.6541 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 311.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 48.087588 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.0876 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -2.492882 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.49288 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -15.119235 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.1192 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 331.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.225889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.2259 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.433000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.43300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.496000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.4960 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 347.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 53.980556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.9806 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -7.193000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.19300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -16.998333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.9983 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 368.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 55.190750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.1907 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -4.588000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.58800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -19.962000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.9620 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 375.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 54.857500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.8575 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.730000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.73000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -21.582375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.5824 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 386.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 51.613588 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.6136 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -7.016941 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.01694 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -24.704235 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.7042 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 406.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.749600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.7496 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.632000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.632000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.905500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.9055 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 423.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 54.518889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.5189 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 0.287000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.287000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -25.725222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.7252 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 435.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 51.763000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.7630 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 0.908500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.908500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -28.039875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.0399 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 449.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 55.133444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.1334 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.340667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.340667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -31.058333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.0583 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 461.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 54.508000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.5080 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.239000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.23900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.081333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.0813 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 477.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 50.011900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.0119 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.745200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.74520 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.166700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.1667 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 496.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.170333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.1703 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.085000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.08500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -33.565778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.5658 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 510.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 52.933889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.9339 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.222667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.22267 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -33.968222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.9682 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 526.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 49.637000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.6370 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.721556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.72156 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -30.967333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.9673 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 543.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.909600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.9096 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.024100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.02410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -33.338700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.3387 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 562.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 47.047111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.0471 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.280667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.28067 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -36.999667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.9997 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 574.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 43.988077 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.9881 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -2.208308 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.20831 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -35.880077 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.8801 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 598.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.111100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.1111 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.111000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.111000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -30.787900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.7879 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 612.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 44.275000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.2750 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 0.590750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.590750 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -27.946000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.9460 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.863400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.8634 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.552300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.55230 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -26.282700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.2827 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 641.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.332300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.3323 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.695500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.69550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.411100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.4111 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 660.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.813778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.8138 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 5.755000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.75500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.481556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.4816 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 676.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 48.864750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.8648 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 6.523375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.52338 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.888000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.8880 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 47.354333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.3543 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 3.867000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.86700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -13.833833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.8338 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 697.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.275900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.2759 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.045200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.04520 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.100700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.1007 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 711.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.153300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.1533 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.157400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.15740 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.398700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.39870 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 730.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 46.438625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.4386 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -0.791875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.791875 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.887625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.88762 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 744.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 47.585750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.5858 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -4.566500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.56650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -4.071000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.07100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 751.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 47.653529 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.6535 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -6.505000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.50500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -6.831647 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.83165 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 771.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.576200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.5762 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.376700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.37670 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.626300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.62630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 788.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 57.646615 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.6466 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -4.450231 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.45023 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -10.146769 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.1468 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 812.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 58.016882 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.0169 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -9.623000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.62300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -7.198059 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.19806 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 832.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 64.434538 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 64.4345 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -7.765692 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.76569 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -11.696462 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6965 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 856.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 64.322800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 64.3228 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.356700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.3567 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.290600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.2906 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 875.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 66.836200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 66.8362 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.834400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.8344 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.658600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.6586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 897.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 66.384500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 66.3845 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -15.639500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.6395 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -16.071750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.0718 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 904.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 62.753385 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.7534 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -20.347385 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.3474 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -16.448462 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.4485 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 928.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 60.269400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.2694 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.053900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.0539 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.673800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.6738 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 947.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 58.998722 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.9987 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -14.721778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.7218 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -18.339278 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.3393 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 58.511000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.5110 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.698625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.69863 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -14.819500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.8195 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 982.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 55.040250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.0402 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -11.027250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.0273 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -12.458250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4583 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 993.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.994900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.9949 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.527100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.52710 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.099100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.0991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1012.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 51.540778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.5408 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.544111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.5441 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.126333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.12633 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 48.767375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.7674 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -10.019875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0199 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -4.711750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.71175 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 50.816000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.8160 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.121625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.12163 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -1.540750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.54075 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1053.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.092800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.0928 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.468200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.46820 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.748600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.74860 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1068.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 50.967300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.9673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.189300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.18930 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.109400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.10940 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1090.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 51.212250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.2123 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -2.875500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.87550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -2.645750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.64575 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1097.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.292900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.2929 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.216800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.216800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.935500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.93550 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1112.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 51.674889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.6749 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.960667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.96067 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.598889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.59889 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1128.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 52.941929 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.9419 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 2.798071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.79807 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -9.971357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.97136 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1146.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 51.576750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.5768 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 1.603750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.60375 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -15.138500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.1385 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1153.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 50.848700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.8487 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.406400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.40640 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.425000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.4250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1175.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.675667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.6757 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 1.156444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.15644 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.591000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.5910 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1191.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.765800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.7658 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.638300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.638300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.875000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.8750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1210.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 41.350778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.3508 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.244222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.24422 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -22.422889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.4229 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1227.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 39.372250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.3723 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 0.096250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.962500E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -26.146000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.1460 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1234.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.932222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.9322 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.384889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.38489 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -26.006667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.0067 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.548700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.5487 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.118700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.11870 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.089600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.0896 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1264.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 34.759625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.7596 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.970500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.97050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -27.458250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.4583 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1275.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 37.625000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.6250 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.515778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.5158 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.871778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.8718 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1287.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.138200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.1382 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.323200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.32320 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.023200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.0232 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1302.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.039800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.0398 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.934800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.93480 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.674100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.6741 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1321.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.172900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1729 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.808100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.8081 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.770200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.7702 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1336.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.613444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.6134 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.793111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.7931 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.511333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.5113 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1350.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 44.889100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.8891 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.508800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.50880 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.716200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.7162 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.392444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.3924 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.624556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.6246 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.212222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.2122 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1381.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 44.663167 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.6632 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -15.973333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.9733 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -24.135833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.1358 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1391.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.145444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.1454 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.476000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4760 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -25.563000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.5630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1407.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 50.089900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.0899 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.608600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.6086 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.242600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.2426 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 47.313750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.3138 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.332750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.3328 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -20.381500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.3815 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1429.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 49.546778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.5468 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.723000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.7230 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -22.250000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.2500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1443.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.087000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.0870 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.103600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.1036 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.064100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.0641 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 51.144222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.1442 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -14.417389 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4174 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -16.900167 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.9002 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1479.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 44.652800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.6528 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.885000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.8850 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.922300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.9223 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 40.668231 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.6682 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -12.870000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.8700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -16.471077 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.4711 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1518.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 41.669444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.6694 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.235778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.2358 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -12.337222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.3372 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1534.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 38.502100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.5021 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.483200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.48320 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.550200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.5502 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1548.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 41.734889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.7349 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.425111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.42511 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.342667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.3427 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 41.901750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.9018 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -1.876500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.87650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -9.386250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.38625 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1571.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.272800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.2728 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.176600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.17660 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.403100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4031 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1590.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 44.096222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.0962 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 5.022444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.02244 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.518889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.51889 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1606.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 43.167231 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.1672 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 8.697769 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.69777 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -14.249462 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.2495 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1630.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.367300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.3673 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.234800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.23480 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.798100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.7981 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1645.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 46.681111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.6811 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 12.427667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.4277 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.065556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.0656 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1657.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.258778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.2588 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 11.780333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.7803 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.354556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.3546 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1671.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 42.246500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.2465 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 9.962000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.96200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.031625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.03163 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1682.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.246500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.2465 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.475400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.47540 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.486800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4868 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 38.300700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.3007 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.338600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.33860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.596300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.59630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1719.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 38.908667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.9087 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 3.138111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.13811 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.602000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.6020 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1736.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 37.940833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.9408 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -0.819833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.819833 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -13.568833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.5688 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1746.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 40.841667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.8417 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.634556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.63456 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.412000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.4120 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1762.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 40.309900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.3099 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.006700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.00670 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.517100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.5171 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1784.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.495300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.4953 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.214100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.21410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.279500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.2795 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1798.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 46.522278 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.5223 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -10.137278 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1373 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -17.636444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.6364 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1819.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 47.793111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.7931 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -12.214222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.2142 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.104889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.1049 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1836.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 53.076095 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.0761 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -16.248857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.2489 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -12.278857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.2789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1860.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.319100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.3191 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.232400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2324 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.929600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.9296 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1879.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 51.951222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.9512 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.796000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.7960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.752889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.75289 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1893.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.013600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.0136 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.980900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.9809 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.031900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.03190 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1915.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 55.254167 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.2542 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -18.521500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.5215 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -4.941833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.94183 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1925.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 57.376333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.3763 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.832222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.8322 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.126111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.12611 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1937.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 61.229000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.2290 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -20.271875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.2719 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -6.984250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.98425 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1951.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 62.360889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.3609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.538667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.5387 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.938556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.9386 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1963.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 59.856222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.8562 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.006333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.0063 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.823111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.82311 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1980.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 61.447353 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.4474 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -12.710412 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.7104 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -3.840471 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.84047 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2000.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 65.077000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.0770 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -10.698000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.6980 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -6.248750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.24875 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 68.820700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 68.8207 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.740500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.74050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.736000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.73600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2022.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 63.860143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.8601 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -6.547143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.54714 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -5.527048 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.52705 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2046.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 67.139889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 67.1399 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.422000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.42200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.427889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.42789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2060.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 65.912000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.9120 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -0.410000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.410000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -2.728294 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.72829 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2080.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 68.817900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 68.8179 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.313700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.31370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.489600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.48960 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2095.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 63.283600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.2836 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.596800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.59680 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.622900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.62290 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2110.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 60.562143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.5621 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 2.831524 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.83152 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -2.841952 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.84195 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2134.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 64.578000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 64.5780 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.066500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.06650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.595300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.59530 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2156.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 60.137000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.1370 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 7.870462 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.87046 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -9.878077 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.87808 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2180.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 57.987300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.9873 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.288600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.28860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.899800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.89980 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2199.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 60.129571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.1296 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 7.523000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.52300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -0.980000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.980000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2217.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 56.738300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.7383 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.327800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.3278 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.281200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.28120 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2239.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.992400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.9924 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.702700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.70270 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.897700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.89770 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2261.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 56.235300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.2353 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.718600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.71860 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.268300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.26830 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2283.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 57.858941 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.8589 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 13.640529 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.6405 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 0.006882 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.688235E-02 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2303.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.073000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.0730 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.900100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.9001 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.656300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.65630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2322.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 50.922900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.9229 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.015500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.0155 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.996600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.99660 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2337.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.625100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.6251 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.992100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.9921 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.993900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.99390 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2351.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 50.886059 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.8861 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 19.146529 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.1465 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -1.299588 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.29959 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2371.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.244700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.2447 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.469400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.4694 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.432300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.43230 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2393.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.928900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.9289 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 15.775800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.7758 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.423900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.42390 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2415.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.162900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.1629 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 20.436200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.4362 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.180100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.18010 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2434.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 44.733778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.7338 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 19.477333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.4773 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.329222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.32922 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2451.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.216400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2164 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 16.783100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.7831 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.368800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.368800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2466.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 40.430500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.4305 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 21.373875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.3739 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 1.547125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.54713 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2477.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.714300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.7143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 23.794600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.7946 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.528700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.52870 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2499.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.420500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.4205 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 19.201500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.2015 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.790200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.79020 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2521.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.337800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.3378 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 21.206700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.2067 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.175400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.17540 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 40.465000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.4650 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 23.605625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 23.6056 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.722250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.72225 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2557.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.742400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.7424 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 24.858600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.8586 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.909300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.9093 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2574.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 35.352500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.3525 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 21.158250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.1583 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -11.365750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.3658 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2581.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 34.703400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.7034 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 17.001600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.0016 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.922800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.92280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2598.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 36.487000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.4870 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 15.536750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.5368 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -7.413250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.41325 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2605.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 36.643000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.6430 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 12.688222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.6882 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.019778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.01978 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2619.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.994889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.9949 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.801000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.8010 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.377222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.37722 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2631.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 40.099556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.0996 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 7.458333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.45833 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.518889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.518889 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2643.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 40.159100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.1591 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.091500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.09150 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.836800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.83680 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2662.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 43.468125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.4681 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 4.270875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.27088 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 4.365000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.36500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2673.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 44.984429 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.9844 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 5.996571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.99657 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 7.681000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.68100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2691.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.249111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.2491 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 1.463111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.46311 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 8.698889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.69889 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2707.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.466400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.4664 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.536200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.53620 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.432200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 13.4322 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2726.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 53.650615 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.6506 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 0.968923 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.968923 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 15.086462 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.0865 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2750.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.410600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.4106 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.660200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.66020 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 16.979600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 16.9796 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2765.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 55.182111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.1821 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.211111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.21111 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 20.295222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 20.2952 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2777.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 57.610000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.6100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.635778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.63578 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 24.683333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.6833 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 1383 atoms have been selected out of 2794 SELRPN: 2794 atoms have been selected out of 2794 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 1383 exclusions and 0 interactions(1-4) %atoms " -7 -HIS -HN " and " -7 -HIS -HB1 " only 0.09 A apart %atoms " -31 -VAL -HN " and " -31 -VAL -HG23" only 0.08 A apart %atoms " -54 -ARG -HA " and " -54 -ARG -HH22" only 0.07 A apart %atoms " -59 -LEU -HN " and " -59 -LEU -HB2 " only 0.03 A apart %atoms " -62 -CYS -HN " and " -62 -CYS -HB1 " only 0.07 A apart %atoms " -68 -LYS -HN " and " -68 -LYS -HZ2 " only 0.06 A apart %atoms " -74 -LYS -HE1 " and " -74 -LYS -HZ3 " only 0.10 A apart %atoms " -136 -LYS -HB2 " and " -136 -LYS -HD1 " only 0.06 A apart %atoms " -143 -PHE -HE1 " and " -143 -PHE -HZ " only 0.05 A apart %atoms " -144 -ILE -HB " and " -144 -ILE -HG22" only 0.07 A apart %atoms " -148 -LYS -HA " and " -148 -LYS -CB " only 0.05 A apart %atoms " -148 -LYS -HE1 " and " -148 -LYS -HE2 " only 0.07 A apart %atoms " -159 -GLY -HN " and " -159 -GLY -HA2 " only 0.05 A apart %atoms " -168 -VAL -HG11" and " -168 -VAL -HG23" only 0.03 A apart NBONDS: found 162699 intra-atom interactions NBONDS: found 14 nonbonded violations %atoms " -14 -SER -HB2 " and " -14 -SER -HG " only 0.03 A apart %atoms " -87 -LEU -HB1 " and " -87 -LEU -HD21" only 0.09 A apart %atoms " -97 -ARG -HD1 " and " -97 -ARG -HE " only 0.05 A apart %atoms " -100 -VAL -HN " and " -100 -VAL -HG21" only 0.05 A apart %atoms " -156 -LYS -HG1 " and " -156 -LYS -HE1 " only 0.09 A apart NBONDS: found 162196 intra-atom interactions NBONDS: found 5 nonbonded violations NBONDS: found 149928 intra-atom interactions NBONDS: found 154223 intra-atom interactions NBONDS: found 148943 intra-atom interactions NBONDS: found 151220 intra-atom interactions NBONDS: found 151492 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0004 ----------------------- | Etotal =745512.310 grad(E)=565.831 E(BOND)=109210.964 E(ANGL)=352796.998 | | E(VDW )=283504.348 | ------------------------------------------------------------------------------- NBONDS: found 152042 intra-atom interactions NBONDS: found 152119 intra-atom interactions NBONDS: found 152244 intra-atom interactions NBONDS: found 152570 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0006 ----------------------- | Etotal =254121.440 grad(E)=349.666 E(BOND)=49747.365 E(ANGL)=86476.045 | | E(VDW )=117898.029 | ------------------------------------------------------------------------------- NBONDS: found 152638 intra-atom interactions NBONDS: found 152652 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0006 ----------------------- | Etotal =208134.577 grad(E)=309.143 E(BOND)=34575.364 E(ANGL)=61955.357 | | E(VDW )=111603.856 | ------------------------------------------------------------------------------- NBONDS: found 152740 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0006 ----------------------- | Etotal =206395.850 grad(E)=308.383 E(BOND)=34797.544 E(ANGL)=61148.638 | | E(VDW )=110449.668 | ------------------------------------------------------------------------------- --------------- cycle= 50 ------ stepsize= 0.0008 ----------------------- | Etotal =206041.321 grad(E)=308.248 E(BOND)=35073.759 E(ANGL)=61087.307 | | E(VDW )=109880.255 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=895621.048 E(kin)=1260.215 temperature=305.697 | | Etotal =894360.833 grad(E)=583.394 E(BOND)=35073.759 E(ANGL)=61087.307 | | E(IMPR)=798199.767 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=579516.615 E(kin)=91513.633 temperature=22198.966 | | Etotal =488002.982 grad(E)=348.522 E(BOND)=59929.391 E(ANGL)=183466.162 | | E(IMPR)=244607.428 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.29303 -2.05940 -14.19847 velocity [A/ps] : -0.72048 1.99827 0.60231 ang. mom. [amu A/ps] :************* -19759.57578 456780.57599 kin. ener. [Kcal/mol] : 161.13965 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: found 151741 intra-atom interactions NBONDS: found 151593 intra-atom interactions NBONDS: found 151861 intra-atom interactions NBONDS: found 152282 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =485012.281 grad(E)=344.587 E(BOND)=47653.822 E(ANGL)=114547.547 | | E(IMPR)=244729.640 E(VDW )=78081.272 | ------------------------------------------------------------------------------- NBONDS: found 152502 intra-atom interactions NBONDS: found 152399 intra-atom interactions NBONDS: found 152327 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =322442.037 grad(E)=268.429 E(BOND)=37880.625 E(ANGL)=62033.886 | | E(IMPR)=145630.589 E(VDW )=76896.937 | ------------------------------------------------------------------------------- NBONDS: found 152303 intra-atom interactions NBONDS: found 152461 intra-atom interactions NBONDS: found 152306 intra-atom interactions --------------- cycle= 30 ------ stepsize= -0.0001 ----------------------- | Etotal =252536.625 grad(E)=262.737 E(BOND)=35475.066 E(ANGL)=44938.157 | | E(IMPR)=99921.466 E(VDW )=72201.936 | ------------------------------------------------------------------------------- NBONDS: found 152282 intra-atom interactions NBONDS: found 152281 intra-atom interactions --------------- cycle= 40 ------ stepsize= -0.0001 ----------------------- | Etotal =212970.844 grad(E)=246.127 E(BOND)=31505.892 E(ANGL)=30236.484 | | E(IMPR)=83385.864 E(VDW )=67842.604 | ------------------------------------------------------------------------------- NBONDS: found 152298 intra-atom interactions NBONDS: found 152310 intra-atom interactions NBONDS: found 152313 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =198755.106 grad(E)=246.932 E(BOND)=30720.151 E(ANGL)=28267.256 | | E(IMPR)=71700.722 E(VDW )=68066.978 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=199968.512 E(kin)=1213.406 temperature=294.342 | | Etotal =198755.106 grad(E)=246.932 E(BOND)=30720.151 E(ANGL)=28267.256 | | E(IMPR)=71700.722 E(VDW )=68066.978 | ------------------------------------------------------------------------------- NBONDS: found 152311 intra-atom interactions NBONDS: found 152294 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=191420.712 E(kin)=8033.684 temperature=1948.775 | | Etotal =183387.028 grad(E)=249.694 E(BOND)=32450.525 E(ANGL)=26393.700 | | E(IMPR)=58047.291 E(VDW )=66495.512 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.30045 -2.06020 -14.18435 velocity [A/ps] : -0.36476 -0.38706 0.11715 ang. mom. [amu A/ps] : 27446.48775 41580.62628 11723.49479 kin. ener. [Kcal/mol] : 9.80358 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 149135 intra-atom interactions NBONDS: found 149793 intra-atom interactions NBONDS: found 149815 intra-atom interactions NBONDS: found 149826 intra-atom interactions NBONDS: found 149846 intra-atom interactions NBONDS: found 149834 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0001 ----------------------- | Etotal =50723.443 grad(E)=40.524 E(BOND)=1389.246 E(ANGL)=14327.051 | | E(IMPR)=35004.485 E(VDW )=2.661 | ------------------------------------------------------------------------------- NBONDS: found 149827 intra-atom interactions NBONDS: found 149898 intra-atom interactions NBONDS: found 150000 intra-atom interactions NBONDS: found 149969 intra-atom interactions NBONDS: found 149922 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =25403.576 grad(E)=57.941 E(BOND)=1170.744 E(ANGL)=12052.700 | | E(IMPR)=12149.874 E(VDW )=30.259 | ------------------------------------------------------------------------------- NBONDS: found 149828 intra-atom interactions NBONDS: found 149756 intra-atom interactions NBONDS: found 149739 intra-atom interactions NBONDS: found 149718 intra-atom interactions NBONDS: found 149794 intra-atom interactions --------------- cycle= 75 ------ stepsize= 0.0004 ----------------------- | Etotal =2745.507 grad(E)=27.301 E(BOND)=177.486 E(ANGL)=1449.731 | | E(IMPR)=1118.192 E(VDW )=0.097 | ------------------------------------------------------------------------------- NBONDS: found 149829 intra-atom interactions NBONDS: found 149856 intra-atom interactions NBONDS: found 149831 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0003 ----------------------- | Etotal =37.835 grad(E)=2.378 E(BOND)=0.201 E(ANGL)=36.391 | | E(IMPR)=1.243 E(VDW )=0.000 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1311.966 E(kin)=1274.131 temperature=309.073 | | Etotal =37.835 grad(E)=2.378 E(BOND)=0.201 E(ANGL)=36.391 | | E(IMPR)=1.243 E(VDW )=0.000 | ------------------------------------------------------------------------------- NBONDS: found 149825 intra-atom interactions NBONDS: found 149846 intra-atom interactions NBONDS: found 149801 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2212.615 E(kin)=1388.425 temperature=336.798 | | Etotal =824.190 grad(E)=28.188 E(BOND)=173.616 E(ANGL)=528.234 | | E(IMPR)=122.332 E(VDW )=0.007 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.29865 -2.06008 -14.18966 velocity [A/ps] : -0.00132 0.07725 0.15558 ang. mom. [amu A/ps] : 67165.27840 -16112.03753 -9091.66672 kin. ener. [Kcal/mol] : 0.99734 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 149827 intra-atom interactions NBONDS: found 149867 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0004 ----------------------- | Etotal =157.710 grad(E)=3.047 E(BOND)=1.154 E(ANGL)=38.467 | | E(DIHE)=65.839 E(IMPR)=1.682 E(VDW )=50.568 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= -0.0001 ----------------------- | Etotal =107.292 grad(E)=2.665 E(BOND)=0.622 E(ANGL)=37.154 | | E(DIHE)=30.857 E(IMPR)=1.592 E(VDW )=37.067 | ------------------------------------------------------------------------------- NBONDS: found 149844 intra-atom interactions --------------- cycle= 150 ------ stepsize= 0.0001 ----------------------- | Etotal =85.659 grad(E)=2.637 E(BOND)=0.518 E(ANGL)=36.915 | | E(DIHE)=11.673 E(IMPR)=1.654 E(VDW )=34.898 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= -0.0002 ----------------------- | Etotal =81.764 grad(E)=2.605 E(BOND)=0.510 E(ANGL)=36.821 | | E(DIHE)=8.440 E(IMPR)=1.506 E(VDW )=34.487 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0015 ----------------------- | Etotal =81.111 grad(E)=2.611 E(BOND)=0.510 E(ANGL)=36.847 | | E(DIHE)=7.801 E(IMPR)=1.512 E(VDW )=34.442 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= -0.0004 ----------------------- | Etotal =80.877 grad(E)=2.600 E(BOND)=0.517 E(ANGL)=36.804 | | E(DIHE)=7.465 E(IMPR)=1.509 E(VDW )=34.581 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0009 ----------------------- | Etotal =80.846 grad(E)=2.600 E(BOND)=0.522 E(ANGL)=36.806 | | E(DIHE)=7.396 E(IMPR)=1.509 E(VDW )=34.614 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0011 ----------------------- | Etotal =80.845 grad(E)=2.600 E(BOND)=0.522 E(ANGL)=36.805 | | E(DIHE)=7.402 E(IMPR)=1.508 E(VDW )=34.608 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1347.351 E(kin)=1266.506 temperature=307.223 | | Etotal =80.845 grad(E)=2.600 E(BOND)=0.522 E(ANGL)=36.805 | | E(DIHE)=7.401 E(IMPR)=1.508 E(VDW )=34.609 | ------------------------------------------------------------------------------- NBONDS: found 149745 intra-atom interactions NBONDS: found 149792 intra-atom interactions NBONDS: found 149841 intra-atom interactions NBONDS: found 149878 intra-atom interactions NBONDS: found 149830 intra-atom interactions NBONDS: found 149804 intra-atom interactions NBONDS: found 149824 intra-atom interactions NBONDS: found 149783 intra-atom interactions NBONDS: found 149734 intra-atom interactions NBONDS: found 149704 intra-atom interactions NBONDS: found 149737 intra-atom interactions NBONDS: found 149721 intra-atom interactions NBONDS: found 149803 intra-atom interactions NBONDS: found 149805 intra-atom interactions NBONDS: found 149769 intra-atom interactions NBONDS: found 149745 intra-atom interactions NBONDS: found 149782 intra-atom interactions NBONDS: found 149761 intra-atom interactions NBONDS: found 149853 intra-atom interactions NBONDS: found 149869 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2521.821 E(kin)=1376.345 temperature=333.868 | | Etotal =1145.476 grad(E)=32.877 E(BOND)=197.618 E(ANGL)=735.040 | | E(DIHE)=58.163 E(IMPR)=108.468 E(VDW )=46.186 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.45686 -2.05497 -13.36891 velocity [A/ps] : 0.58700 -0.27629 -0.24386 ang. mom. [amu A/ps] : 750.97422 -11902.58153 -15617.17378 kin. ener. [Kcal/mol] : 0.81749 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 4149 --------------- cycle= 50 ------ stepsize= 0.0002 ----------------------- | Etotal =100.595 grad(E)=2.923 E(BOND)=0.606 E(ANGL)=39.292 | | E(DIHE)=21.207 E(IMPR)=1.850 E(VDW )=37.640 | ------------------------------------------------------------------------------- NBONDS: found 149833 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0001 ----------------------- | Etotal =84.211 grad(E)=2.655 E(BOND)=0.533 E(ANGL)=37.008 | | E(DIHE)=10.513 E(IMPR)=1.596 E(VDW )=34.562 | ------------------------------------------------------------------------------- --------------- cycle= 150 ------ stepsize= 0.0000 ----------------------- | Etotal =81.506 grad(E)=2.609 E(BOND)=0.553 E(ANGL)=36.861 | | E(DIHE)=7.409 E(IMPR)=1.516 E(VDW )=35.167 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0004 ----------------------- | Etotal =81.343 grad(E)=2.604 E(BOND)=0.534 E(ANGL)=36.830 | | E(DIHE)=7.494 E(IMPR)=1.508 E(VDW )=34.977 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0006 ----------------------- | Etotal =81.306 grad(E)=2.602 E(BOND)=0.538 E(ANGL)=36.815 | | E(DIHE)=7.467 E(IMPR)=1.509 E(VDW )=34.976 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= -0.0002 ----------------------- | Etotal =81.302 grad(E)=2.601 E(BOND)=0.536 E(ANGL)=36.812 | | E(DIHE)=7.482 E(IMPR)=1.509 E(VDW )=34.963 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0000 ----------------------- | Etotal =81.302 grad(E)=2.601 E(BOND)=0.537 E(ANGL)=36.812 | | E(DIHE)=7.472 E(IMPR)=1.508 E(VDW )=34.973 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0005 ----------------------- | Etotal =81.302 grad(E)=2.601 E(BOND)=0.537 E(ANGL)=36.812 | | E(DIHE)=7.473 E(IMPR)=1.508 E(VDW )=34.972 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. Number of violations greater 0.020: 0 RMS deviation= 0.001 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. Number of violations greater 5.000: 0 RMS deviation= 0.276 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 2794 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 1411 atoms have been selected out of 2794 SHOW: average of selected elements = 37.620432 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_12_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1642084 current use = 0 bytes HEAP: maximum overhead = 912 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1642084 bytes Maximum dynamic memory overhead: 912 bytes Program started at: 22:27:48 on 19-Jan-06 Program stopped at: 22:28:31 on 19-Jan-06 CPU time used: 42.7200 seconds ============================================================