============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 22:29:17 on 19-Jan-06 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_14.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_14_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/francis/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) = end SEGMNT: 173 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 2794(MAXA= 40000) NBOND= 2828(MAXB= 40000) -> NTHETA= 5113(MAXT= 80000) NGRP= 175(MAXGRP= 40000) -> NPHI= 4293(MAXP= 80000) NIMPHI= 1491(MAXIMP= 40000) -> NNB= 984(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER STRUCTURE FROM CYANA 2.1 14-JAN-06 1PDB COOR>EXPDTA NMR, 20 STRUCTURES COOR>REMARK model 14 COOR>ATOM 1 N GLY A 1 14.362 -21.101 -70.875 1.00 44.24 %READC-ERR: atom 1 GLY H not found in molecular structure %READC-ERR: atom 1 GLY 2HA not found in molecular structure %READC-ERR: atom 1 GLY 3HA not found in molecular structure %READC-ERR: atom 2 HIS H not found in molecular structure %READC-ERR: atom 2 HIS 2HB not found in molecular structure %READC-ERR: atom 2 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS H not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS H not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS H not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS H not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS H not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 8 LEU H not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 GLU H not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 10 CYS H not found in molecular structure %READC-ERR: atom 10 CYS 2HB not found in molecular structure %READC-ERR: atom 10 CYS 3HB not found in molecular structure %READC-ERR: atom 11 SER H not found in molecular structure %READC-ERR: atom 11 SER 2HB not found in molecular structure %READC-ERR: atom 11 SER 3HB not found in molecular structure %READC-ERR: atom 12 SER H not found in molecular structure %READC-ERR: atom 12 SER 2HB not found in molecular structure %READC-ERR: atom 12 SER 3HB not found in molecular structure %READC-ERR: atom 13 ASP H not found in molecular structure %READC-ERR: atom 13 ASP 2HB not found in molecular structure %READC-ERR: atom 13 ASP 3HB not found in molecular structure %READC-ERR: atom 14 SER H not found in molecular structure %READC-ERR: atom 14 SER 2HB not found in molecular structure %READC-ERR: atom 14 SER 3HB not found in molecular structure %READC-ERR: atom 15 LEU H not found in molecular structure %READC-ERR: atom 15 LEU 2HB not found in molecular structure %READC-ERR: atom 15 LEU 3HB not found in molecular structure %READC-ERR: atom 15 LEU 1HD1 not found in molecular structure %READC-ERR: atom 15 LEU 2HD1 not found in molecular structure %READC-ERR: atom 15 LEU 3HD1 not found in molecular structure %READC-ERR: atom 15 LEU 1HD2 not found in molecular structure %READC-ERR: atom 15 LEU 2HD2 not found in molecular structure %READC-ERR: atom 15 LEU 3HD2 not found in molecular structure %READC-ERR: atom 16 GLN H not found in molecular structure %READC-ERR: atom 16 GLN 2HB not found in molecular structure %READC-ERR: atom 16 GLN 3HB not found in molecular structure %READC-ERR: atom 16 GLN 2HG not found in molecular structure %READC-ERR: atom 16 GLN 3HG not found in molecular structure %READC-ERR: atom 16 GLN 1HE2 not found in molecular structure %READC-ERR: atom 16 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 LEU H not found in molecular structure %READC-ERR: atom 17 LEU 2HB not found in molecular structure %READC-ERR: atom 17 LEU 3HB not found in molecular structure %READC-ERR: atom 17 LEU 1HD1 not found in molecular structure %READC-ERR: atom 17 LEU 2HD1 not found in molecular structure %READC-ERR: atom 17 LEU 3HD1 not found in molecular structure %READC-ERR: atom 17 LEU 1HD2 not found in molecular structure %READC-ERR: atom 17 LEU 2HD2 not found in molecular structure %READC-ERR: atom 17 LEU 3HD2 not found in molecular structure %READC-ERR: atom 18 HIS H not found in molecular structure %READC-ERR: atom 18 HIS 2HB not found in molecular structure %READC-ERR: atom 18 HIS 3HB not found in molecular structure %READC-ERR: atom 19 ASN H not found in molecular structure %READC-ERR: atom 19 ASN 2HB not found in molecular structure %READC-ERR: atom 19 ASN 3HB not found in molecular structure %READC-ERR: atom 19 ASN 1HD2 not found in molecular structure %READC-ERR: atom 19 ASN 2HD2 not found in molecular structure %READC-ERR: atom 20 VAL H not found in molecular structure %READC-ERR: atom 20 VAL 1HG1 not found in molecular structure %READC-ERR: atom 20 VAL 2HG1 not found in molecular structure %READC-ERR: atom 20 VAL 3HG1 not found in molecular structure %READC-ERR: atom 20 VAL 1HG2 not found in molecular structure %READC-ERR: atom 20 VAL 2HG2 not found in molecular structure %READC-ERR: atom 20 VAL 3HG2 not found in molecular structure %READC-ERR: atom 21 PHE H not found in molecular structure %READC-ERR: atom 21 PHE 2HB not found in molecular structure %READC-ERR: atom 21 PHE 3HB not found in molecular structure %READC-ERR: atom 22 VAL H not found in molecular structure %READC-ERR: atom 22 VAL 1HG1 not found in molecular structure %READC-ERR: atom 22 VAL 2HG1 not found in molecular structure %READC-ERR: atom 22 VAL 3HG1 not found in molecular structure %READC-ERR: atom 22 VAL 1HG2 not found in molecular structure %READC-ERR: atom 22 VAL 2HG2 not found in molecular structure %READC-ERR: atom 22 VAL 3HG2 not found in molecular structure %READC-ERR: atom 23 TYR H not found in molecular structure %READC-ERR: atom 23 TYR 2HB not found in molecular structure %READC-ERR: atom 23 TYR 3HB not found in molecular structure %READC-ERR: atom 24 GLY H not found in molecular structure %READC-ERR: atom 24 GLY 2HA not found in molecular structure %READC-ERR: atom 24 GLY 3HA not found in molecular structure %READC-ERR: atom 25 SER H not found in molecular structure %READC-ERR: atom 25 SER 2HB not found in molecular structure %READC-ERR: atom 25 SER 3HB not found in molecular structure %READC-ERR: atom 26 PHE H not found in molecular structure %READC-ERR: atom 26 PHE 2HB not found in molecular structure %READC-ERR: atom 26 PHE 3HB not found in molecular structure %READC-ERR: atom 27 GLN H not found in molecular structure %READC-ERR: atom 27 GLN 2HB not found in molecular structure %READC-ERR: atom 27 GLN 3HB not found in molecular structure %READC-ERR: atom 27 GLN 2HG not found in molecular structure %READC-ERR: atom 27 GLN 3HG not found in molecular structure %READC-ERR: atom 27 GLN 1HE2 not found in molecular structure %READC-ERR: atom 27 GLN 2HE2 not found in molecular structure %READC-ERR: atom 28 ASP H not found in molecular structure %READC-ERR: atom 28 ASP 2HB not found in molecular structure %READC-ERR: atom 28 ASP 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HB not found in molecular structure %READC-ERR: atom 29 PRO 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HG not found in molecular structure %READC-ERR: atom 29 PRO 3HG not found in molecular structure %READC-ERR: atom 29 PRO 2HD not found in molecular structure %READC-ERR: atom 29 PRO 3HD not found in molecular structure %READC-ERR: atom 30 ASP H not found in molecular structure %READC-ERR: atom 30 ASP 2HB not found in molecular structure %READC-ERR: atom 30 ASP 3HB not found in molecular structure %READC-ERR: atom 31 VAL H not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE H not found in molecular structure %READC-ERR: atom 32 ILE 1HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG2 not found in molecular structure %READC-ERR: atom 32 ILE 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG1 not found in molecular structure %READC-ERR: atom 32 ILE 3HG1 not found in molecular structure %READC-ERR: atom 32 ILE 1HD1 not found in molecular structure %READC-ERR: atom 32 ILE 2HD1 not found in molecular structure %READC-ERR: atom 32 ILE 3HD1 not found in molecular structure %READC-ERR: atom 33 ASN H not found in molecular structure %READC-ERR: atom 33 ASN 2HB not found in molecular structure %READC-ERR: atom 33 ASN 3HB not found in molecular structure %READC-ERR: atom 33 ASN 1HD2 not found in molecular structure %READC-ERR: atom 33 ASN 2HD2 not found in molecular structure %READC-ERR: atom 34 VAL H not found in molecular structure %READC-ERR: atom 34 VAL 1HG1 not found in molecular structure %READC-ERR: atom 34 VAL 2HG1 not found in molecular structure %READC-ERR: atom 34 VAL 3HG1 not found in molecular structure %READC-ERR: atom 34 VAL 1HG2 not found in molecular structure %READC-ERR: atom 34 VAL 2HG2 not found in molecular structure %READC-ERR: atom 34 VAL 3HG2 not found in molecular structure %READC-ERR: atom 35 MET H not found in molecular structure %READC-ERR: atom 35 MET 2HB not found in molecular structure %READC-ERR: atom 35 MET 3HB not found in molecular structure %READC-ERR: atom 35 MET 2HG not found in molecular structure %READC-ERR: atom 35 MET 3HG not found in molecular structure %READC-ERR: atom 35 MET 1HE not found in molecular structure %READC-ERR: atom 35 MET 2HE not found in molecular structure %READC-ERR: atom 35 MET 3HE not found in molecular structure %READC-ERR: atom 36 LEU H not found in molecular structure %READC-ERR: atom 36 LEU 2HB not found in molecular structure %READC-ERR: atom 36 LEU 3HB not found in molecular structure %READC-ERR: atom 36 LEU 1HD1 not found in molecular structure %READC-ERR: atom 36 LEU 2HD1 not found in molecular structure %READC-ERR: atom 36 LEU 3HD1 not found in molecular structure %READC-ERR: atom 36 LEU 1HD2 not found in molecular structure %READC-ERR: atom 36 LEU 2HD2 not found in molecular structure %READC-ERR: atom 36 LEU 3HD2 not found in molecular structure %READC-ERR: atom 37 ASP H not found in molecular structure %READC-ERR: atom 37 ASP 2HB not found in molecular structure %READC-ERR: atom 37 ASP 3HB not found in molecular structure %READC-ERR: atom 38 ARG H not found in molecular structure %READC-ERR: atom 38 ARG 2HB not found in molecular structure %READC-ERR: atom 38 ARG 3HB not found in molecular structure %READC-ERR: atom 38 ARG 2HG not found in molecular structure %READC-ERR: atom 38 ARG 3HG not found in molecular structure %READC-ERR: atom 38 ARG 2HD not found in molecular structure %READC-ERR: atom 38 ARG 3HD not found in molecular structure %READC-ERR: atom 38 ARG 1HH1 not found in molecular structure %READC-ERR: atom 38 ARG 2HH1 not found in molecular structure %READC-ERR: atom 38 ARG 1HH2 not found in molecular structure %READC-ERR: atom 38 ARG 2HH2 not found in molecular structure %READC-ERR: atom 39 THR H not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 PRO 2HB not found in molecular structure %READC-ERR: atom 40 PRO 3HB not found in molecular structure %READC-ERR: atom 40 PRO 2HG not found in molecular structure %READC-ERR: atom 40 PRO 3HG not found in molecular structure %READC-ERR: atom 40 PRO 2HD not found in molecular structure %READC-ERR: atom 40 PRO 3HD not found in molecular structure %READC-ERR: atom 41 GLU H not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 42 ILE H not found in molecular structure %READC-ERR: atom 42 ILE 1HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG2 not found in molecular structure %READC-ERR: atom 42 ILE 3HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG1 not found in molecular structure %READC-ERR: atom 42 ILE 3HG1 not found in molecular structure %READC-ERR: atom 42 ILE 1HD1 not found in molecular structure %READC-ERR: atom 42 ILE 2HD1 not found in molecular structure %READC-ERR: atom 42 ILE 3HD1 not found in molecular structure %READC-ERR: atom 43 VAL H not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 44 SER H not found in molecular structure %READC-ERR: atom 44 SER 2HB not found in molecular structure %READC-ERR: atom 44 SER 3HB not found in molecular structure %READC-ERR: atom 45 ALA H not found in molecular structure %READC-ERR: atom 45 ALA 1HB not found in molecular structure %READC-ERR: atom 45 ALA 2HB not found in molecular structure %READC-ERR: atom 45 ALA 3HB not found in molecular structure %READC-ERR: atom 46 THR H not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 LEU H not found in molecular structure %READC-ERR: atom 47 LEU 2HB not found in molecular structure %READC-ERR: atom 47 LEU 3HB not found in molecular structure %READC-ERR: atom 47 LEU 1HD1 not found in molecular structure %READC-ERR: atom 47 LEU 2HD1 not found in molecular structure %READC-ERR: atom 47 LEU 3HD1 not found in molecular structure %READC-ERR: atom 47 LEU 1HD2 not found in molecular structure %READC-ERR: atom 47 LEU 2HD2 not found in molecular structure %READC-ERR: atom 47 LEU 3HD2 not found in molecular structure %READC-ERR: atom 48 PRO 2HB not found in molecular structure %READC-ERR: atom 48 PRO 3HB not found in molecular structure %READC-ERR: atom 48 PRO 2HG not found in molecular structure %READC-ERR: atom 48 PRO 3HG not found in molecular structure %READC-ERR: atom 48 PRO 2HD not found in molecular structure %READC-ERR: atom 48 PRO 3HD not found in molecular structure %READC-ERR: atom 49 GLY H not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY 3HA not found in molecular structure %READC-ERR: atom 50 PHE H not found in molecular structure %READC-ERR: atom 50 PHE 2HB not found in molecular structure %READC-ERR: atom 50 PHE 3HB not found in molecular structure %READC-ERR: atom 51 GLN H not found in molecular structure %READC-ERR: atom 51 GLN 2HB not found in molecular structure %READC-ERR: atom 51 GLN 3HB not found in molecular structure %READC-ERR: atom 51 GLN 2HG not found in molecular structure %READC-ERR: atom 51 GLN 3HG not found in molecular structure %READC-ERR: atom 51 GLN 1HE2 not found in molecular structure %READC-ERR: atom 51 GLN 2HE2 not found in molecular structure %READC-ERR: atom 52 ARG H not found in molecular structure %READC-ERR: atom 52 ARG 2HB not found in molecular structure %READC-ERR: atom 52 ARG 3HB not found in molecular structure %READC-ERR: atom 52 ARG 2HG not found in molecular structure %READC-ERR: atom 52 ARG 3HG not found in molecular structure %READC-ERR: atom 52 ARG 2HD not found in molecular structure %READC-ERR: atom 52 ARG 3HD not found in molecular structure %READC-ERR: atom 52 ARG 1HH1 not found in molecular structure %READC-ERR: atom 52 ARG 2HH1 not found in molecular structure %READC-ERR: atom 52 ARG 1HH2 not found in molecular structure %READC-ERR: atom 52 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 PHE H not found in molecular structure %READC-ERR: atom 53 PHE 2HB not found in molecular structure %READC-ERR: atom 53 PHE 3HB not found in molecular structure %READC-ERR: atom 54 ARG H not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 55 LEU H not found in molecular structure %READC-ERR: atom 55 LEU 2HB not found in molecular structure %READC-ERR: atom 55 LEU 3HB not found in molecular structure %READC-ERR: atom 55 LEU 1HD1 not found in molecular structure %READC-ERR: atom 55 LEU 2HD1 not found in molecular structure %READC-ERR: atom 55 LEU 3HD1 not found in molecular structure %READC-ERR: atom 55 LEU 1HD2 not found in molecular structure %READC-ERR: atom 55 LEU 2HD2 not found in molecular structure %READC-ERR: atom 55 LEU 3HD2 not found in molecular structure %READC-ERR: atom 56 LYS H not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 GLY H not found in molecular structure %READC-ERR: atom 57 GLY 2HA not found in molecular structure %READC-ERR: atom 57 GLY 3HA not found in molecular structure %READC-ERR: atom 58 ARG H not found in molecular structure %READC-ERR: atom 58 ARG 2HB not found in molecular structure %READC-ERR: atom 58 ARG 3HB not found in molecular structure %READC-ERR: atom 58 ARG 2HG not found in molecular structure %READC-ERR: atom 58 ARG 3HG not found in molecular structure %READC-ERR: atom 58 ARG 2HD not found in molecular structure %READC-ERR: atom 58 ARG 3HD not found in molecular structure %READC-ERR: atom 58 ARG 1HH1 not found in molecular structure %READC-ERR: atom 58 ARG 2HH1 not found in molecular structure %READC-ERR: atom 58 ARG 1HH2 not found in molecular structure %READC-ERR: atom 58 ARG 2HH2 not found in molecular structure %READC-ERR: atom 59 LEU H not found in molecular structure %READC-ERR: atom 59 LEU 2HB not found in molecular structure %READC-ERR: atom 59 LEU 3HB not found in molecular structure %READC-ERR: atom 59 LEU 1HD1 not found in molecular structure %READC-ERR: atom 59 LEU 2HD1 not found in molecular structure %READC-ERR: atom 59 LEU 3HD1 not found in molecular structure %READC-ERR: atom 59 LEU 1HD2 not found in molecular structure %READC-ERR: atom 59 LEU 2HD2 not found in molecular structure %READC-ERR: atom 59 LEU 3HD2 not found in molecular structure %READC-ERR: atom 60 TYR H not found in molecular structure %READC-ERR: atom 60 TYR 2HB not found in molecular structure %READC-ERR: atom 60 TYR 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HB not found in molecular structure %READC-ERR: atom 61 PRO 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HG not found in molecular structure %READC-ERR: atom 61 PRO 3HG not found in molecular structure %READC-ERR: atom 61 PRO 2HD not found in molecular structure %READC-ERR: atom 61 PRO 3HD not found in molecular structure %READC-ERR: atom 62 CYS H not found in molecular structure %READC-ERR: atom 62 CYS 2HB not found in molecular structure %READC-ERR: atom 62 CYS 3HB not found in molecular structure %READC-ERR: atom 63 ILE H not found in molecular structure %READC-ERR: atom 63 ILE 1HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG2 not found in molecular structure %READC-ERR: atom 63 ILE 3HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG1 not found in molecular structure %READC-ERR: atom 63 ILE 3HG1 not found in molecular structure %READC-ERR: atom 63 ILE 1HD1 not found in molecular structure %READC-ERR: atom 63 ILE 2HD1 not found in molecular structure %READC-ERR: atom 63 ILE 3HD1 not found in molecular structure %READC-ERR: atom 64 VAL H not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 PRO 2HB not found in molecular structure %READC-ERR: atom 65 PRO 3HB not found in molecular structure %READC-ERR: atom 65 PRO 2HG not found in molecular structure %READC-ERR: atom 65 PRO 3HG not found in molecular structure %READC-ERR: atom 65 PRO 2HD not found in molecular structure %READC-ERR: atom 65 PRO 3HD not found in molecular structure %READC-ERR: atom 66 SER H not found in molecular structure %READC-ERR: atom 66 SER 2HB not found in molecular structure %READC-ERR: atom 66 SER 3HB not found in molecular structure %READC-ERR: atom 67 GLU H not found in molecular structure %READC-ERR: atom 67 GLU 2HB not found in molecular structure %READC-ERR: atom 67 GLU 3HB not found in molecular structure %READC-ERR: atom 67 GLU 2HG not found in molecular structure %READC-ERR: atom 67 GLU 3HG not found in molecular structure %READC-ERR: atom 68 LYS H not found in molecular structure %READC-ERR: atom 68 LYS 2HB not found in molecular structure %READC-ERR: atom 68 LYS 3HB not found in molecular structure %READC-ERR: atom 68 LYS 2HG not found in molecular structure %READC-ERR: atom 68 LYS 3HG not found in molecular structure %READC-ERR: atom 68 LYS 2HD not found in molecular structure %READC-ERR: atom 68 LYS 3HD not found in molecular structure %READC-ERR: atom 68 LYS 2HE not found in molecular structure %READC-ERR: atom 68 LYS 3HE not found in molecular structure %READC-ERR: atom 68 LYS 1HZ not found in molecular structure %READC-ERR: atom 68 LYS 2HZ not found in molecular structure %READC-ERR: atom 68 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 GLY H not found in molecular structure %READC-ERR: atom 69 GLY 2HA not found in molecular structure %READC-ERR: atom 69 GLY 3HA not found in molecular structure %READC-ERR: atom 70 GLU H not found in molecular structure %READC-ERR: atom 70 GLU 2HB not found in molecular structure %READC-ERR: atom 70 GLU 3HB not found in molecular structure %READC-ERR: atom 70 GLU 2HG not found in molecular structure %READC-ERR: atom 70 GLU 3HG not found in molecular structure %READC-ERR: atom 71 VAL H not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 72 HIS H not found in molecular structure %READC-ERR: atom 72 HIS 2HB not found in molecular structure %READC-ERR: atom 72 HIS 3HB not found in molecular structure %READC-ERR: atom 73 GLY H not found in molecular structure %READC-ERR: atom 73 GLY 2HA not found in molecular structure %READC-ERR: atom 73 GLY 3HA not found in molecular structure %READC-ERR: atom 74 LYS H not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 75 VAL H not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 76 LEU H not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 77 MET H not found in molecular structure %READC-ERR: atom 77 MET 2HB not found in molecular structure %READC-ERR: atom 77 MET 3HB not found in molecular structure %READC-ERR: atom 77 MET 2HG not found in molecular structure %READC-ERR: atom 77 MET 3HG not found in molecular structure %READC-ERR: atom 77 MET 1HE not found in molecular structure %READC-ERR: atom 77 MET 2HE not found in molecular structure %READC-ERR: atom 77 MET 3HE not found in molecular structure %READC-ERR: atom 78 GLY H not found in molecular structure %READC-ERR: atom 78 GLY 2HA not found in molecular structure %READC-ERR: atom 78 GLY 3HA not found in molecular structure %READC-ERR: atom 79 VAL H not found in molecular structure %READC-ERR: atom 79 VAL 1HG1 not found in molecular structure %READC-ERR: atom 79 VAL 2HG1 not found in molecular structure %READC-ERR: atom 79 VAL 3HG1 not found in molecular structure %READC-ERR: atom 79 VAL 1HG2 not found in molecular structure %READC-ERR: atom 79 VAL 2HG2 not found in molecular structure %READC-ERR: atom 79 VAL 3HG2 not found in molecular structure %READC-ERR: atom 80 THR H not found in molecular structure %READC-ERR: atom 80 THR 1HG2 not found in molecular structure %READC-ERR: atom 80 THR 2HG2 not found in molecular structure %READC-ERR: atom 80 THR 3HG2 not found in molecular structure %READC-ERR: atom 81 SER H not found in molecular structure %READC-ERR: atom 81 SER 2HB not found in molecular structure %READC-ERR: atom 81 SER 3HB not found in molecular structure %READC-ERR: atom 82 ASP H not found in molecular structure %READC-ERR: atom 82 ASP 2HB not found in molecular structure %READC-ERR: atom 82 ASP 3HB not found in molecular structure %READC-ERR: atom 83 GLU H not found in molecular structure %READC-ERR: atom 83 GLU 2HB not found in molecular structure %READC-ERR: atom 83 GLU 3HB not found in molecular structure %READC-ERR: atom 83 GLU 2HG not found in molecular structure %READC-ERR: atom 83 GLU 3HG not found in molecular structure %READC-ERR: atom 84 LEU H not found in molecular structure %READC-ERR: atom 84 LEU 2HB not found in molecular structure %READC-ERR: atom 84 LEU 3HB not found in molecular structure %READC-ERR: atom 84 LEU 1HD1 not found in molecular structure %READC-ERR: atom 84 LEU 2HD1 not found in molecular structure %READC-ERR: atom 84 LEU 3HD1 not found in molecular structure %READC-ERR: atom 84 LEU 1HD2 not found in molecular structure %READC-ERR: atom 84 LEU 2HD2 not found in molecular structure %READC-ERR: atom 84 LEU 3HD2 not found in molecular structure %READC-ERR: atom 85 GLU H not found in molecular structure %READC-ERR: atom 85 GLU 2HB not found in molecular structure %READC-ERR: atom 85 GLU 3HB not found in molecular structure %READC-ERR: atom 85 GLU 2HG not found in molecular structure %READC-ERR: atom 85 GLU 3HG not found in molecular structure %READC-ERR: atom 86 ASN H not found in molecular structure %READC-ERR: atom 86 ASN 2HB not found in molecular structure %READC-ERR: atom 86 ASN 3HB not found in molecular structure %READC-ERR: atom 86 ASN 1HD2 not found in molecular structure %READC-ERR: atom 86 ASN 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU H not found in molecular structure %READC-ERR: atom 87 LEU 2HB not found in molecular structure %READC-ERR: atom 87 LEU 3HB not found in molecular structure %READC-ERR: atom 87 LEU 1HD1 not found in molecular structure %READC-ERR: atom 87 LEU 2HD1 not found in molecular structure %READC-ERR: atom 87 LEU 3HD1 not found in molecular structure %READC-ERR: atom 87 LEU 1HD2 not found in molecular structure %READC-ERR: atom 87 LEU 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU 3HD2 not found in molecular structure %READC-ERR: atom 88 ASP H not found in molecular structure %READC-ERR: atom 88 ASP 2HB not found in molecular structure %READC-ERR: atom 88 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ALA H not found in molecular structure %READC-ERR: atom 89 ALA 1HB not found in molecular structure %READC-ERR: atom 89 ALA 2HB not found in molecular structure %READC-ERR: atom 89 ALA 3HB not found in molecular structure %READC-ERR: atom 90 VAL H not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 91 GLU H not found in molecular structure %READC-ERR: atom 91 GLU 2HB not found in molecular structure %READC-ERR: atom 91 GLU 3HB not found in molecular structure %READC-ERR: atom 91 GLU 2HG not found in molecular structure %READC-ERR: atom 91 GLU 3HG not found in molecular structure %READC-ERR: atom 92 GLY H not found in molecular structure %READC-ERR: atom 92 GLY 2HA not found in molecular structure %READC-ERR: atom 92 GLY 3HA not found in molecular structure %READC-ERR: atom 93 ASN H not found in molecular structure %READC-ERR: atom 93 ASN 2HB not found in molecular structure %READC-ERR: atom 93 ASN 3HB not found in molecular structure %READC-ERR: atom 93 ASN 1HD2 not found in molecular structure %READC-ERR: atom 93 ASN 2HD2 not found in molecular structure %READC-ERR: atom 94 GLU H not found in molecular structure %READC-ERR: atom 94 GLU 2HB not found in molecular structure %READC-ERR: atom 94 GLU 3HB not found in molecular structure %READC-ERR: atom 94 GLU 2HG not found in molecular structure %READC-ERR: atom 94 GLU 3HG not found in molecular structure %READC-ERR: atom 95 TYR H not found in molecular structure %READC-ERR: atom 95 TYR 2HB not found in molecular structure %READC-ERR: atom 95 TYR 3HB not found in molecular structure %READC-ERR: atom 96 GLU H not found in molecular structure %READC-ERR: atom 96 GLU 2HB not found in molecular structure %READC-ERR: atom 96 GLU 3HB not found in molecular structure %READC-ERR: atom 96 GLU 2HG not found in molecular structure %READC-ERR: atom 96 GLU 3HG not found in molecular structure %READC-ERR: atom 97 ARG H not found in molecular structure %READC-ERR: atom 97 ARG 2HB not found in molecular structure %READC-ERR: atom 97 ARG 3HB not found in molecular structure %READC-ERR: atom 97 ARG 2HG not found in molecular structure %READC-ERR: atom 97 ARG 3HG not found in molecular structure %READC-ERR: atom 97 ARG 2HD not found in molecular structure %READC-ERR: atom 97 ARG 3HD not found in molecular structure %READC-ERR: atom 97 ARG 1HH1 not found in molecular structure %READC-ERR: atom 97 ARG 2HH1 not found in molecular structure %READC-ERR: atom 97 ARG 1HH2 not found in molecular structure %READC-ERR: atom 97 ARG 2HH2 not found in molecular structure %READC-ERR: atom 98 VAL H not found in molecular structure %READC-ERR: atom 98 VAL 1HG1 not found in molecular structure %READC-ERR: atom 98 VAL 2HG1 not found in molecular structure %READC-ERR: atom 98 VAL 3HG1 not found in molecular structure %READC-ERR: atom 98 VAL 1HG2 not found in molecular structure %READC-ERR: atom 98 VAL 2HG2 not found in molecular structure %READC-ERR: atom 98 VAL 3HG2 not found in molecular structure %READC-ERR: atom 99 THR H not found in molecular structure %READC-ERR: atom 99 THR 1HG2 not found in molecular structure %READC-ERR: atom 99 THR 2HG2 not found in molecular structure %READC-ERR: atom 99 THR 3HG2 not found in molecular structure %READC-ERR: atom 100 VAL H not found in molecular structure %READC-ERR: atom 100 VAL 1HG1 not found in molecular structure %READC-ERR: atom 100 VAL 2HG1 not found in molecular structure %READC-ERR: atom 100 VAL 3HG1 not found in molecular structure %READC-ERR: atom 100 VAL 1HG2 not found in molecular structure %READC-ERR: atom 100 VAL 2HG2 not found in molecular structure %READC-ERR: atom 100 VAL 3HG2 not found in molecular structure %READC-ERR: atom 101 GLY H not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY 3HA not found in molecular structure %READC-ERR: atom 102 ILE H not found in molecular structure %READC-ERR: atom 102 ILE 1HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG2 not found in molecular structure %READC-ERR: atom 102 ILE 3HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG1 not found in molecular structure %READC-ERR: atom 102 ILE 3HG1 not found in molecular structure %READC-ERR: atom 102 ILE 1HD1 not found in molecular structure %READC-ERR: atom 102 ILE 2HD1 not found in molecular structure %READC-ERR: atom 102 ILE 3HD1 not found in molecular structure %READC-ERR: atom 103 VAL H not found in molecular structure %READC-ERR: atom 103 VAL 1HG1 not found in molecular structure %READC-ERR: atom 103 VAL 2HG1 not found in molecular structure %READC-ERR: atom 103 VAL 3HG1 not found in molecular structure %READC-ERR: atom 103 VAL 1HG2 not found in molecular structure %READC-ERR: atom 103 VAL 2HG2 not found in molecular structure %READC-ERR: atom 103 VAL 3HG2 not found in molecular structure %READC-ERR: atom 104 ARG H not found in molecular structure %READC-ERR: atom 104 ARG 2HB not found in molecular structure %READC-ERR: atom 104 ARG 3HB not found in molecular structure %READC-ERR: atom 104 ARG 2HG not found in molecular structure %READC-ERR: atom 104 ARG 3HG not found in molecular structure %READC-ERR: atom 104 ARG 2HD not found in molecular structure %READC-ERR: atom 104 ARG 3HD not found in molecular structure %READC-ERR: atom 104 ARG 1HH1 not found in molecular structure %READC-ERR: atom 104 ARG 2HH1 not found in molecular structure %READC-ERR: atom 104 ARG 1HH2 not found in molecular structure %READC-ERR: atom 104 ARG 2HH2 not found in molecular structure %READC-ERR: atom 105 GLU H not found in molecular structure %READC-ERR: atom 105 GLU 2HB not found in molecular structure %READC-ERR: atom 105 GLU 3HB not found in molecular structure %READC-ERR: atom 105 GLU 2HG not found in molecular structure %READC-ERR: atom 105 GLU 3HG not found in molecular structure %READC-ERR: atom 106 ASP H not found in molecular structure %READC-ERR: atom 106 ASP 2HB not found in molecular structure %READC-ERR: atom 106 ASP 3HB not found in molecular structure %READC-ERR: atom 107 ASN H not found in molecular structure %READC-ERR: atom 107 ASN 2HB not found in molecular structure %READC-ERR: atom 107 ASN 3HB not found in molecular structure %READC-ERR: atom 107 ASN 1HD2 not found in molecular structure %READC-ERR: atom 107 ASN 2HD2 not found in molecular structure %READC-ERR: atom 108 SER H not found in molecular structure %READC-ERR: atom 108 SER 2HB not found in molecular structure %READC-ERR: atom 108 SER 3HB not found in molecular structure %READC-ERR: atom 109 GLU H not found in molecular structure %READC-ERR: atom 109 GLU 2HB not found in molecular structure %READC-ERR: atom 109 GLU 3HB not found in molecular structure %READC-ERR: atom 109 GLU 2HG not found in molecular structure %READC-ERR: atom 109 GLU 3HG not found in molecular structure %READC-ERR: atom 110 LYS H not found in molecular structure %READC-ERR: atom 110 LYS 2HB not found in molecular structure %READC-ERR: atom 110 LYS 3HB not found in molecular structure %READC-ERR: atom 110 LYS 2HG not found in molecular structure %READC-ERR: atom 110 LYS 3HG not found in molecular structure %READC-ERR: atom 110 LYS 2HD not found in molecular structure %READC-ERR: atom 110 LYS 3HD not found in molecular structure %READC-ERR: atom 110 LYS 2HE not found in molecular structure %READC-ERR: atom 110 LYS 3HE not found in molecular structure %READC-ERR: atom 110 LYS 1HZ not found in molecular structure %READC-ERR: atom 110 LYS 2HZ not found in molecular structure %READC-ERR: atom 110 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 MET H not found in molecular structure %READC-ERR: atom 111 MET 2HB not found in molecular structure %READC-ERR: atom 111 MET 3HB not found in molecular structure %READC-ERR: atom 111 MET 2HG not found in molecular structure %READC-ERR: atom 111 MET 3HG not found in molecular structure %READC-ERR: atom 111 MET 1HE not found in molecular structure %READC-ERR: atom 111 MET 2HE not found in molecular structure %READC-ERR: atom 111 MET 3HE not found in molecular structure %READC-ERR: atom 112 ALA H not found in molecular structure %READC-ERR: atom 112 ALA 1HB not found in molecular structure %READC-ERR: atom 112 ALA 2HB not found in molecular structure %READC-ERR: atom 112 ALA 3HB not found in molecular structure %READC-ERR: atom 113 VAL H not found in molecular structure %READC-ERR: atom 113 VAL 1HG1 not found in molecular structure %READC-ERR: atom 113 VAL 2HG1 not found in molecular structure %READC-ERR: atom 113 VAL 3HG1 not found in molecular structure %READC-ERR: atom 113 VAL 1HG2 not found in molecular structure %READC-ERR: atom 113 VAL 2HG2 not found in molecular structure %READC-ERR: atom 113 VAL 3HG2 not found in molecular structure %READC-ERR: atom 114 LYS H not found in molecular structure %READC-ERR: atom 114 LYS 2HB not found in molecular structure %READC-ERR: atom 114 LYS 3HB not found in molecular structure %READC-ERR: atom 114 LYS 2HG not found in molecular structure %READC-ERR: atom 114 LYS 3HG not found in molecular structure %READC-ERR: atom 114 LYS 2HD not found in molecular structure %READC-ERR: atom 114 LYS 3HD not found in molecular structure %READC-ERR: atom 114 LYS 2HE not found in molecular structure %READC-ERR: atom 114 LYS 3HE not found in molecular structure %READC-ERR: atom 114 LYS 1HZ not found in molecular structure %READC-ERR: atom 114 LYS 2HZ not found in molecular structure %READC-ERR: atom 114 LYS 3HZ not found in molecular structure %READC-ERR: atom 115 THR H not found in molecular structure %READC-ERR: atom 115 THR 1HG2 not found in molecular structure %READC-ERR: atom 115 THR 2HG2 not found in molecular structure %READC-ERR: atom 115 THR 3HG2 not found in molecular structure %READC-ERR: atom 116 TYR H not found in molecular structure %READC-ERR: atom 116 TYR 2HB not found in molecular structure %READC-ERR: atom 116 TYR 3HB not found in molecular structure %READC-ERR: atom 117 MET H not found in molecular structure %READC-ERR: atom 117 MET 2HB not found in molecular structure %READC-ERR: atom 117 MET 3HB not found in molecular structure %READC-ERR: atom 117 MET 2HG not found in molecular structure %READC-ERR: atom 117 MET 3HG not found in molecular structure %READC-ERR: atom 117 MET 1HE not found in molecular structure %READC-ERR: atom 117 MET 2HE not found in molecular structure %READC-ERR: atom 117 MET 3HE not found in molecular structure %READC-ERR: atom 118 TRP H not found in molecular structure %READC-ERR: atom 118 TRP 2HB not found in molecular structure %READC-ERR: atom 118 TRP 3HB not found in molecular structure %READC-ERR: atom 119 ILE H not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ASN H not found in molecular structure %READC-ERR: atom 120 ASN 2HB not found in molecular structure %READC-ERR: atom 120 ASN 3HB not found in molecular structure %READC-ERR: atom 120 ASN 1HD2 not found in molecular structure %READC-ERR: atom 120 ASN 2HD2 not found in molecular structure %READC-ERR: atom 121 LYS H not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 122 ALA H not found in molecular structure %READC-ERR: atom 122 ALA 1HB not found in molecular structure %READC-ERR: atom 122 ALA 2HB not found in molecular structure %READC-ERR: atom 122 ALA 3HB not found in molecular structure %READC-ERR: atom 123 ASP H not found in molecular structure %READC-ERR: atom 123 ASP 2HB not found in molecular structure %READC-ERR: atom 123 ASP 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HB not found in molecular structure %READC-ERR: atom 124 PRO 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HG not found in molecular structure %READC-ERR: atom 124 PRO 3HG not found in molecular structure %READC-ERR: atom 124 PRO 2HD not found in molecular structure %READC-ERR: atom 124 PRO 3HD not found in molecular structure %READC-ERR: atom 125 ASP H not found in molecular structure %READC-ERR: atom 125 ASP 2HB not found in molecular structure %READC-ERR: atom 125 ASP 3HB not found in molecular structure %READC-ERR: atom 126 MET H not found in molecular structure %READC-ERR: atom 126 MET 2HB not found in molecular structure %READC-ERR: atom 126 MET 3HB not found in molecular structure %READC-ERR: atom 126 MET 2HG not found in molecular structure %READC-ERR: atom 126 MET 3HG not found in molecular structure %READC-ERR: atom 126 MET 1HE not found in molecular structure %READC-ERR: atom 126 MET 2HE not found in molecular structure %READC-ERR: atom 126 MET 3HE not found in molecular structure %READC-ERR: atom 127 PHE H not found in molecular structure %READC-ERR: atom 127 PHE 2HB not found in molecular structure %READC-ERR: atom 127 PHE 3HB not found in molecular structure %READC-ERR: atom 128 GLY H not found in molecular structure %READC-ERR: atom 128 GLY 2HA not found in molecular structure %READC-ERR: atom 128 GLY 3HA not found in molecular structure %READC-ERR: atom 129 GLU H not found in molecular structure %READC-ERR: atom 129 GLU 2HB not found in molecular structure %READC-ERR: atom 129 GLU 3HB not found in molecular structure %READC-ERR: atom 129 GLU 2HG not found in molecular structure %READC-ERR: atom 129 GLU 3HG not found in molecular structure %READC-ERR: atom 130 TRP H not found in molecular structure %READC-ERR: atom 130 TRP 2HB not found in molecular structure %READC-ERR: atom 130 TRP 3HB not found in molecular structure %READC-ERR: atom 131 ASN H not found in molecular structure %READC-ERR: atom 131 ASN 2HB not found in molecular structure %READC-ERR: atom 131 ASN 3HB not found in molecular structure %READC-ERR: atom 131 ASN 1HD2 not found in molecular structure %READC-ERR: atom 131 ASN 2HD2 not found in molecular structure %READC-ERR: atom 132 PHE H not found in molecular structure %READC-ERR: atom 132 PHE 2HB not found in molecular structure %READC-ERR: atom 132 PHE 3HB not found in molecular structure %READC-ERR: atom 133 GLU H not found in molecular structure %READC-ERR: atom 133 GLU 2HB not found in molecular structure %READC-ERR: atom 133 GLU 3HB not found in molecular structure %READC-ERR: atom 133 GLU 2HG not found in molecular structure %READC-ERR: atom 133 GLU 3HG not found in molecular structure %READC-ERR: atom 134 GLU H not found in molecular structure %READC-ERR: atom 134 GLU 2HB not found in molecular structure %READC-ERR: atom 134 GLU 3HB not found in molecular structure %READC-ERR: atom 134 GLU 2HG not found in molecular structure %READC-ERR: atom 134 GLU 3HG not found in molecular structure %READC-ERR: atom 135 TRP H not found in molecular structure %READC-ERR: atom 135 TRP 2HB not found in molecular structure %READC-ERR: atom 135 TRP 3HB not found in molecular structure %READC-ERR: atom 136 LYS H not found in molecular structure %READC-ERR: atom 136 LYS 2HB not found in molecular structure %READC-ERR: atom 136 LYS 3HB not found in molecular structure %READC-ERR: atom 136 LYS 2HG not found in molecular structure %READC-ERR: atom 136 LYS 3HG not found in molecular structure %READC-ERR: atom 136 LYS 2HD not found in molecular structure %READC-ERR: atom 136 LYS 3HD not found in molecular structure %READC-ERR: atom 136 LYS 2HE not found in molecular structure %READC-ERR: atom 136 LYS 3HE not found in molecular structure %READC-ERR: atom 136 LYS 1HZ not found in molecular structure %READC-ERR: atom 136 LYS 2HZ not found in molecular structure %READC-ERR: atom 136 LYS 3HZ not found in molecular structure %READC-ERR: atom 137 ARG H not found in molecular structure %READC-ERR: atom 137 ARG 2HB not found in molecular structure %READC-ERR: atom 137 ARG 3HB not found in molecular structure %READC-ERR: atom 137 ARG 2HG not found in molecular structure %READC-ERR: atom 137 ARG 3HG not found in molecular structure %READC-ERR: atom 137 ARG 2HD not found in molecular structure %READC-ERR: atom 137 ARG 3HD not found in molecular structure %READC-ERR: atom 137 ARG 1HH1 not found in molecular structure %READC-ERR: atom 137 ARG 2HH1 not found in molecular structure %READC-ERR: atom 137 ARG 1HH2 not found in molecular structure %READC-ERR: atom 137 ARG 2HH2 not found in molecular structure %READC-ERR: atom 138 LEU H not found in molecular structure %READC-ERR: atom 138 LEU 2HB not found in molecular structure %READC-ERR: atom 138 LEU 3HB not found in molecular structure %READC-ERR: atom 138 LEU 1HD1 not found in molecular structure %READC-ERR: atom 138 LEU 2HD1 not found in molecular structure %READC-ERR: atom 138 LEU 3HD1 not found in molecular structure %READC-ERR: atom 138 LEU 1HD2 not found in molecular structure %READC-ERR: atom 138 LEU 2HD2 not found in molecular structure %READC-ERR: atom 138 LEU 3HD2 not found in molecular structure %READC-ERR: atom 139 HIS H not found in molecular structure %READC-ERR: atom 139 HIS 2HB not found in molecular structure %READC-ERR: atom 139 HIS 3HB not found in molecular structure %READC-ERR: atom 140 LYS H not found in molecular structure %READC-ERR: atom 140 LYS 2HB not found in molecular structure %READC-ERR: atom 140 LYS 3HB not found in molecular structure %READC-ERR: atom 140 LYS 2HG not found in molecular structure %READC-ERR: atom 140 LYS 3HG not found in molecular structure %READC-ERR: atom 140 LYS 2HD not found in molecular structure %READC-ERR: atom 140 LYS 3HD not found in molecular structure %READC-ERR: atom 140 LYS 2HE not found in molecular structure %READC-ERR: atom 140 LYS 3HE not found in molecular structure %READC-ERR: atom 140 LYS 1HZ not found in molecular structure %READC-ERR: atom 140 LYS 2HZ not found in molecular structure %READC-ERR: atom 140 LYS 3HZ not found in molecular structure %READC-ERR: atom 141 LYS H not found in molecular structure %READC-ERR: atom 141 LYS 2HB not found in molecular structure %READC-ERR: atom 141 LYS 3HB not found in molecular structure %READC-ERR: atom 141 LYS 2HG not found in molecular structure %READC-ERR: atom 141 LYS 3HG not found in molecular structure %READC-ERR: atom 141 LYS 2HD not found in molecular structure %READC-ERR: atom 141 LYS 3HD not found in molecular structure %READC-ERR: atom 141 LYS 2HE not found in molecular structure %READC-ERR: atom 141 LYS 3HE not found in molecular structure %READC-ERR: atom 141 LYS 1HZ not found in molecular structure %READC-ERR: atom 141 LYS 2HZ not found in molecular structure %READC-ERR: atom 141 LYS 3HZ not found in molecular structure %READC-ERR: atom 142 LYS H not found in molecular structure %READC-ERR: atom 142 LYS 2HB not found in molecular structure %READC-ERR: atom 142 LYS 3HB not found in molecular structure %READC-ERR: atom 142 LYS 2HG not found in molecular structure %READC-ERR: atom 142 LYS 3HG not found in molecular structure %READC-ERR: atom 142 LYS 2HD not found in molecular structure %READC-ERR: atom 142 LYS 3HD not found in molecular structure %READC-ERR: atom 142 LYS 2HE not found in molecular structure %READC-ERR: atom 142 LYS 3HE not found in molecular structure %READC-ERR: atom 142 LYS 1HZ not found in molecular structure %READC-ERR: atom 142 LYS 2HZ not found in molecular structure %READC-ERR: atom 142 LYS 3HZ not found in molecular structure %READC-ERR: atom 143 PHE H not found in molecular structure %READC-ERR: atom 143 PHE 2HB not found in molecular structure %READC-ERR: atom 143 PHE 3HB not found in molecular structure %READC-ERR: atom 144 ILE H not found in molecular structure %READC-ERR: atom 144 ILE 1HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG2 not found in molecular structure %READC-ERR: atom 144 ILE 3HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG1 not found in molecular structure %READC-ERR: atom 144 ILE 3HG1 not found in molecular structure %READC-ERR: atom 144 ILE 1HD1 not found in molecular structure %READC-ERR: atom 144 ILE 2HD1 not found in molecular structure %READC-ERR: atom 144 ILE 3HD1 not found in molecular structure %READC-ERR: atom 145 GLU H not found in molecular structure %READC-ERR: atom 145 GLU 2HB not found in molecular structure %READC-ERR: atom 145 GLU 3HB not found in molecular structure %READC-ERR: atom 145 GLU 2HG not found in molecular structure %READC-ERR: atom 145 GLU 3HG not found in molecular structure %READC-ERR: atom 146 THR H not found in molecular structure %READC-ERR: atom 146 THR 1HG2 not found in molecular structure %READC-ERR: atom 146 THR 2HG2 not found in molecular structure %READC-ERR: atom 146 THR 3HG2 not found in molecular structure %READC-ERR: atom 147 PHE H not found in molecular structure %READC-ERR: atom 147 PHE 2HB not found in molecular structure %READC-ERR: atom 147 PHE 3HB not found in molecular structure %READC-ERR: atom 148 LYS H not found in molecular structure %READC-ERR: atom 148 LYS 2HB not found in molecular structure %READC-ERR: atom 148 LYS 3HB not found in molecular structure %READC-ERR: atom 148 LYS 2HG not found in molecular structure %READC-ERR: atom 148 LYS 3HG not found in molecular structure %READC-ERR: atom 148 LYS 2HD not found in molecular structure %READC-ERR: atom 148 LYS 3HD not found in molecular structure %READC-ERR: atom 148 LYS 2HE not found in molecular structure %READC-ERR: atom 148 LYS 3HE not found in molecular structure %READC-ERR: atom 148 LYS 1HZ not found in molecular structure %READC-ERR: atom 148 LYS 2HZ not found in molecular structure %READC-ERR: atom 148 LYS 3HZ not found in molecular structure %READC-ERR: atom 149 LYS H not found in molecular structure %READC-ERR: atom 149 LYS 2HB not found in molecular structure %READC-ERR: atom 149 LYS 3HB not found in molecular structure %READC-ERR: atom 149 LYS 2HG not found in molecular structure %READC-ERR: atom 149 LYS 3HG not found in molecular structure %READC-ERR: atom 149 LYS 2HD not found in molecular structure %READC-ERR: atom 149 LYS 3HD not found in molecular structure %READC-ERR: atom 149 LYS 2HE not found in molecular structure %READC-ERR: atom 149 LYS 3HE not found in molecular structure %READC-ERR: atom 149 LYS 1HZ not found in molecular structure %READC-ERR: atom 149 LYS 2HZ not found in molecular structure %READC-ERR: atom 149 LYS 3HZ not found in molecular structure %READC-ERR: atom 150 ILE H not found in molecular structure %READC-ERR: atom 150 ILE 1HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG2 not found in molecular structure %READC-ERR: atom 150 ILE 3HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG1 not found in molecular structure %READC-ERR: atom 150 ILE 3HG1 not found in molecular structure %READC-ERR: atom 150 ILE 1HD1 not found in molecular structure %READC-ERR: atom 150 ILE 2HD1 not found in molecular structure %READC-ERR: atom 150 ILE 3HD1 not found in molecular structure %READC-ERR: atom 151 MET H not found in molecular structure %READC-ERR: atom 151 MET 2HB not found in molecular structure %READC-ERR: atom 151 MET 3HB not found in molecular structure %READC-ERR: atom 151 MET 2HG not found in molecular structure %READC-ERR: atom 151 MET 3HG not found in molecular structure %READC-ERR: atom 151 MET 1HE not found in molecular structure %READC-ERR: atom 151 MET 2HE not found in molecular structure %READC-ERR: atom 151 MET 3HE not found in molecular structure %READC-ERR: atom 152 GLU H not found in molecular structure %READC-ERR: atom 152 GLU 2HB not found in molecular structure %READC-ERR: atom 152 GLU 3HB not found in molecular structure %READC-ERR: atom 152 GLU 2HG not found in molecular structure %READC-ERR: atom 152 GLU 3HG not found in molecular structure %READC-ERR: atom 153 CYS H not found in molecular structure %READC-ERR: atom 153 CYS 2HB not found in molecular structure %READC-ERR: atom 153 CYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS H not found in molecular structure %READC-ERR: atom 154 LYS 2HB not found in molecular structure %READC-ERR: atom 154 LYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS 2HG not found in molecular structure %READC-ERR: atom 154 LYS 3HG not found in molecular structure %READC-ERR: atom 154 LYS 2HD not found in molecular structure %READC-ERR: atom 154 LYS 3HD not found in molecular structure %READC-ERR: atom 154 LYS 2HE not found in molecular structure %READC-ERR: atom 154 LYS 3HE not found in molecular structure %READC-ERR: atom 154 LYS 1HZ not found in molecular structure %READC-ERR: atom 154 LYS 2HZ not found in molecular structure %READC-ERR: atom 154 LYS 3HZ not found in molecular structure %READC-ERR: atom 155 LYS H not found in molecular structure %READC-ERR: atom 155 LYS 2HB not found in molecular structure %READC-ERR: atom 155 LYS 3HB not found in molecular structure %READC-ERR: atom 155 LYS 2HG not found in molecular structure %READC-ERR: atom 155 LYS 3HG not found in molecular structure %READC-ERR: atom 155 LYS 2HD not found in molecular structure %READC-ERR: atom 155 LYS 3HD not found in molecular structure %READC-ERR: atom 155 LYS 2HE not found in molecular structure %READC-ERR: atom 155 LYS 3HE not found in molecular structure %READC-ERR: atom 155 LYS 1HZ not found in molecular structure %READC-ERR: atom 155 LYS 2HZ not found in molecular structure %READC-ERR: atom 155 LYS 3HZ not found in molecular structure %READC-ERR: atom 156 LYS H not found in molecular structure %READC-ERR: atom 156 LYS 2HB not found in molecular structure %READC-ERR: atom 156 LYS 3HB not found in molecular structure %READC-ERR: atom 156 LYS 2HG not found in molecular structure %READC-ERR: atom 156 LYS 3HG not found in molecular structure %READC-ERR: atom 156 LYS 2HD not found in molecular structure %READC-ERR: atom 156 LYS 3HD not found in molecular structure %READC-ERR: atom 156 LYS 2HE not found in molecular structure %READC-ERR: atom 156 LYS 3HE not found in molecular structure %READC-ERR: atom 156 LYS 1HZ not found in molecular structure %READC-ERR: atom 156 LYS 2HZ not found in molecular structure %READC-ERR: atom 156 LYS 3HZ not found in molecular structure %READC-ERR: atom 157 PRO 2HB not found in molecular structure %READC-ERR: atom 157 PRO 3HB not found in molecular structure %READC-ERR: atom 157 PRO 2HG not found in molecular structure %READC-ERR: atom 157 PRO 3HG not found in molecular structure %READC-ERR: atom 157 PRO 2HD not found in molecular structure %READC-ERR: atom 157 PRO 3HD not found in molecular structure %READC-ERR: atom 158 GLN H not found in molecular structure %READC-ERR: atom 158 GLN 2HB not found in molecular structure %READC-ERR: atom 158 GLN 3HB not found in molecular structure %READC-ERR: atom 158 GLN 2HG not found in molecular structure %READC-ERR: atom 158 GLN 3HG not found in molecular structure %READC-ERR: atom 158 GLN 1HE2 not found in molecular structure %READC-ERR: atom 158 GLN 2HE2 not found in molecular structure %READC-ERR: atom 159 GLY H not found in molecular structure %READC-ERR: atom 159 GLY 2HA not found in molecular structure %READC-ERR: atom 159 GLY 3HA not found in molecular structure %READC-ERR: atom 160 GLN H not found in molecular structure %READC-ERR: atom 160 GLN 2HB not found in molecular structure %READC-ERR: atom 160 GLN 3HB not found in molecular structure %READC-ERR: atom 160 GLN 2HG not found in molecular structure %READC-ERR: atom 160 GLN 3HG not found in molecular structure %READC-ERR: atom 160 GLN 1HE2 not found in molecular structure %READC-ERR: atom 160 GLN 2HE2 not found in molecular structure %READC-ERR: atom 161 GLY H not found in molecular structure %READC-ERR: atom 161 GLY 2HA not found in molecular structure %READC-ERR: atom 161 GLY 3HA not found in molecular structure %READC-ERR: atom 162 ASN H not found in molecular structure %READC-ERR: atom 162 ASN 2HB not found in molecular structure %READC-ERR: atom 162 ASN 3HB not found in molecular structure %READC-ERR: atom 162 ASN 1HD2 not found in molecular structure %READC-ERR: atom 162 ASN 2HD2 not found in molecular structure %READC-ERR: atom 163 ASP H not found in molecular structure %READC-ERR: atom 163 ASP 2HB not found in molecular structure %READC-ERR: atom 163 ASP 3HB not found in molecular structure %READC-ERR: atom 164 ASP H not found in molecular structure %READC-ERR: atom 164 ASP 2HB not found in molecular structure %READC-ERR: atom 164 ASP 3HB not found in molecular structure %READC-ERR: atom 165 ILE H not found in molecular structure %READC-ERR: atom 165 ILE 1HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG2 not found in molecular structure %READC-ERR: atom 165 ILE 3HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG1 not found in molecular structure %READC-ERR: atom 165 ILE 3HG1 not found in molecular structure %READC-ERR: atom 165 ILE 1HD1 not found in molecular structure %READC-ERR: atom 165 ILE 2HD1 not found in molecular structure %READC-ERR: atom 165 ILE 3HD1 not found in molecular structure %READC-ERR: atom 166 SER H not found in molecular structure %READC-ERR: atom 166 SER 2HB not found in molecular structure %READC-ERR: atom 166 SER 3HB not found in molecular structure %READC-ERR: atom 167 HIS H not found in molecular structure %READC-ERR: atom 167 HIS 2HB not found in molecular structure %READC-ERR: atom 167 HIS 3HB not found in molecular structure %READC-ERR: atom 168 VAL H not found in molecular structure %READC-ERR: atom 168 VAL 1HG1 not found in molecular structure %READC-ERR: atom 168 VAL 2HG1 not found in molecular structure %READC-ERR: atom 168 VAL 3HG1 not found in molecular structure %READC-ERR: atom 168 VAL 1HG2 not found in molecular structure %READC-ERR: atom 168 VAL 2HG2 not found in molecular structure %READC-ERR: atom 168 VAL 3HG2 not found in molecular structure %READC-ERR: atom 169 LEU H not found in molecular structure %READC-ERR: atom 169 LEU 2HB not found in molecular structure %READC-ERR: atom 169 LEU 3HB not found in molecular structure %READC-ERR: atom 169 LEU 1HD1 not found in molecular structure %READC-ERR: atom 169 LEU 2HD1 not found in molecular structure %READC-ERR: atom 169 LEU 3HD1 not found in molecular structure %READC-ERR: atom 169 LEU 1HD2 not found in molecular structure %READC-ERR: atom 169 LEU 2HD2 not found in molecular structure %READC-ERR: atom 169 LEU 3HD2 not found in molecular structure %READC-ERR: atom 170 ARG H not found in molecular structure %READC-ERR: atom 170 ARG 2HB not found in molecular structure %READC-ERR: atom 170 ARG 3HB not found in molecular structure %READC-ERR: atom 170 ARG 2HG not found in molecular structure %READC-ERR: atom 170 ARG 3HG not found in molecular structure %READC-ERR: atom 170 ARG 2HD not found in molecular structure %READC-ERR: atom 170 ARG 3HD not found in molecular structure %READC-ERR: atom 170 ARG 1HH1 not found in molecular structure %READC-ERR: atom 170 ARG 2HH1 not found in molecular structure %READC-ERR: atom 170 ARG 1HH2 not found in molecular structure %READC-ERR: atom 170 ARG 2HH2 not found in molecular structure %READC-ERR: atom 171 GLU H not found in molecular structure %READC-ERR: atom 171 GLU 2HB not found in molecular structure %READC-ERR: atom 171 GLU 3HB not found in molecular structure %READC-ERR: atom 171 GLU 2HG not found in molecular structure %READC-ERR: atom 171 GLU 3HG not found in molecular structure %READC-ERR: atom 172 ASP H not found in molecular structure %READC-ERR: atom 172 ASP 2HB not found in molecular structure %READC-ERR: atom 172 ASP 3HB not found in molecular structure %READC-ERR: atom 173 GLN H not found in molecular structure %READC-ERR: atom 173 GLN 2HB not found in molecular structure %READC-ERR: atom 173 GLN 3HB not found in molecular structure %READC-ERR: atom 173 GLN 2HG not found in molecular structure %READC-ERR: atom 173 GLN 3HG not found in molecular structure %READC-ERR: atom 173 GLN 1HE2 not found in molecular structure %READC-ERR: atom 173 GLN 2HE2 not found in molecular structure %READC-ERR: atom 173 GLN O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 1383.00 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 1411 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 1383.00 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 173 atoms have been selected out of 2794 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 15.327500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.3275 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -21.285250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.2853 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -69.545250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -69.5453 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 10.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 18.362143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.3621 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -18.109714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.1097 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -68.466786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -68.4668 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 20.626357 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.6264 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -22.595357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -22.5954 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -64.073571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -64.0736 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 46.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 20.050643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.0506 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -18.473714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.4737 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -61.693357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -61.6934 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 64.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 21.527143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.5271 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -21.623571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.6236 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -57.278429 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -57.2784 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 82.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 22.932643 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.9326 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -17.116143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.1161 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -55.505786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -55.5058 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 100.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 23.941357 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.9414 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -19.281429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.2814 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -49.935000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -49.9350 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 118.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 26.910100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.9101 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.988500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.9885 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -49.212700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -49.2127 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 137.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 25.403600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.4036 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.142100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.1421 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -43.994700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -43.9947 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 152.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 28.229750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.2298 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -14.035750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0358 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -42.322875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -42.3229 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 163.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 26.636875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.6369 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -15.414125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.4141 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -38.473500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -38.4735 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 174.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 30.271000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.2710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.177500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.1775 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -35.779750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -35.7798 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 185.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 27.543333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.5433 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.759889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.7599 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -32.021889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.0219 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 197.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 31.508750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 31.5088 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -15.839625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.8396 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -30.228125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.2281 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 208.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 29.128200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.1282 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.714300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.7143 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -26.426300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.4263 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 34.108700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.1087 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.090300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.0903 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.344500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.3445 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 34.843800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.8438 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.412400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.4124 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.719300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.7193 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 263.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 38.333286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.3333 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -13.684714 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.6847 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -22.317500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.3175 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 281.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.319667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.3197 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.338111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.33811 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.739889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7399 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 295.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.970667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.9707 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.719556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.71956 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.602556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.6026 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 311.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 46.686235 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.6862 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -4.651353 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.65135 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -15.378529 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.3785 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 331.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.753111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.7531 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.116444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.11644 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.774111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7741 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 347.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 53.462833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.4628 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -3.910611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.91061 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -18.184333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.1843 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 368.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 52.685750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.6858 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -0.647250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.647250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -20.856750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.8568 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 375.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 54.226125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.2261 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -2.916750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.91675 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -22.891500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.8915 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 386.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 51.306118 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.3061 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -5.150412 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.15041 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -24.842941 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.8429 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 406.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.449100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.4491 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.226600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.22660 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.147700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.1477 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 423.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.621889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.6219 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 1.545000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.54500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -25.749111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.7491 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 435.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 45.300625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.3006 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 1.392500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.39250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -28.552750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.5528 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 449.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.480222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.4802 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.511000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.51100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -31.769222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.7692 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 461.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.454111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.4541 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.048889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.04889 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.694111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.6941 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 477.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.630400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.6304 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.453200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.45320 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.799100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.7991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 496.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.644556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.6446 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.611000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.61100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -34.165222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.1652 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 510.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.068778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.0688 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.709889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.70989 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -34.934222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.9342 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 526.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.860889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.8609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.296556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.29656 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -31.655444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.6554 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 543.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.402900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.4029 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.543200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.54320 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -34.022300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.0223 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 562.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.365333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.3653 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.731667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.73167 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -36.621889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -36.6219 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 574.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 39.574615 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.5746 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -2.976231 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.97623 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -33.515154 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.5152 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 598.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.285700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2857 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.484600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.48460 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -30.842600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.8426 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 612.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 40.138250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.1383 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -3.650500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.65050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -27.592500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.5925 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 36.541400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.5414 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.811800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.811800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.649400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.6494 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 641.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.179600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.1796 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.008500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.850000E-02 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.061200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.0612 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 660.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.282556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.2826 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 0.480667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.480667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.761889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7619 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 676.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 41.575500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.5755 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 2.811250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.81125 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.409875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.4099 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 42.466833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.4668 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -0.276000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.276000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -13.542167 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.5422 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 697.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 44.180500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.1805 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.480400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.480400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.014000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0140 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 711.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.607300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.6073 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.278800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.27880 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.758900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.75890 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 730.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 45.621375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.6214 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -4.632125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.63212 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -6.034125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.03413 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 744.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 49.250500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.2505 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -6.992500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.99250 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -4.970500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.97050 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 751.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 50.500000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.5000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -8.544118 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.54412 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -8.033235 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.03324 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 771.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.890600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.8906 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.220300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.22030 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.779500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.77950 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 788.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 55.620769 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.6208 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 0.093462 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.934615E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -11.498154 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4982 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 812.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 59.506235 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.5062 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -4.820118 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.82012 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -10.423235 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4232 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 832.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 60.064769 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.0648 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 0.238308 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.238308 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -14.983769 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.9838 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 856.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 64.612400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 64.6124 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.141900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.14190 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.078100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.0781 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 875.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 65.609900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.6099 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.909500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.909500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.482800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.4828 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 897.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 68.807750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 68.8078 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -3.500500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.50050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -14.084500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.0845 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 904.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 69.539000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 69.5390 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -8.939308 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.93931 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -15.403769 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.4038 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 928.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 64.866500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 64.8665 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.748000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.74800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.012100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.0121 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 947.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 63.418000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.4180 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -7.659667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.65967 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -20.851389 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.8514 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 59.820750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.8208 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.165875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.16588 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -17.081375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.0814 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 982.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 58.357875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.3579 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -8.169125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.16913 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -14.183750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1838 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 993.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.113600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.1136 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.605500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.60550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.383400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.3834 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1012.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 55.493889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.4939 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.679889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.67989 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.815222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.81522 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 53.148750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.1488 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -10.824750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.8248 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -6.152500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.15250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 53.618375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.6184 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.246750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.24675 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -3.002125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.00213 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1053.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.533400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.5334 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.837000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.83700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.424400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.42440 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1068.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.206700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.2067 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.450000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.45000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.771600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.77160 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1090.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 51.217000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.2170 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -3.640750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.64075 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -3.384750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.38475 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1097.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.609100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.6091 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.527700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.527700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.260700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.26070 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1112.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 49.979111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.9791 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.746444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.74644 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.121000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.1210 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1128.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 47.566286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.5663 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 2.256929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.25693 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -10.058500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0585 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1146.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 46.639500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.6395 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 0.779000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.779000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -15.324500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.3245 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1153.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.087100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.0871 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.092300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.09230 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.570700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.5707 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1175.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 42.249444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.2494 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.323889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.32389 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.503000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.5030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1191.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 42.926200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.9262 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.802600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.80260 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.700800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.7008 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1210.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 37.597333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.5973 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.696667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.69667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.777222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.7772 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1227.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 37.178500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.1785 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -7.934000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.93400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -25.435500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.4355 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1234.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.943667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.9437 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.165333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1653 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -25.295444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.2954 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 38.493000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.4930 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.579500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.5795 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -28.888000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.8880 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1264.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 38.915500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.9155 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.397125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3971 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -28.244125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.2441 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1275.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 42.171000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.1710 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.497556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.4976 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -31.292333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.2923 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1287.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 42.768700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.7687 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.400400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.4004 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.120600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.1206 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1302.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.055300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.0553 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.811100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.8111 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.387900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.3879 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1321.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.297600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.2976 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.298100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.2981 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -27.257700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.2577 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1336.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.093444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.0934 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.476778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.4768 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.012111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.0121 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1350.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.815100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.8151 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.596700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.5967 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.357600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.3576 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 49.592000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.5920 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -16.532000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.5320 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -23.340222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.3402 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1381.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 51.766833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.7668 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -16.588167 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.5882 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -26.754000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.7540 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1391.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 53.410000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.4100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -12.882889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.8829 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -26.861111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.8611 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1407.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.833000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.8330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.114900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.1149 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.433300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.4333 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 54.941000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.9410 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.050250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.0503 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -22.859750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.8598 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1429.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 58.020556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.0206 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -16.680000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.6800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -24.871222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.8712 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1443.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 59.468500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.4685 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.268000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.2680 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.171300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.1713 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 56.782667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.7827 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -12.913556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.9136 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -18.876889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8769 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1479.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.268900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.2689 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.140400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.1404 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.174700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.1747 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 46.646000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.6460 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -17.224154 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.2242 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -17.543077 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.5431 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1518.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 47.934222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.9342 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.186667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.1867 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.072333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.0723 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1534.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.928400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.9284 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.464500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.4645 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.680300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.6803 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1548.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 44.386667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.3867 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.114667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.1147 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.252000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.2520 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 42.333000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.3330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -8.277250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.27725 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -9.175000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.17500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1571.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.276100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2761 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.993700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.99370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.056000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.0560 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1590.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.806333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.8063 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.545000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.54500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.851111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.85111 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1606.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 36.468462 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.4685 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 0.756077 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.756077 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -13.154154 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.1542 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1630.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.526600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.5266 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 4.333300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.33330 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.186900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.1869 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1645.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 36.021333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.0213 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 6.250556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.25056 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -12.217222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.2172 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1657.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 34.697333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.6973 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 3.839333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.83933 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.724000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.72400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1671.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 35.711125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.7111 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 1.121625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.12163 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.557375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.55738 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1682.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 33.256700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.2567 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.779500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.779500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.162500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.16250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 35.132300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.1323 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.542300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.54230 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.473900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.47390 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1719.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 36.351222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.3512 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.087889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.08789 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -12.590222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5902 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1736.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 38.086500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.0865 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -9.787167 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.78717 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -12.864333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.8643 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1746.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 41.260778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2608 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.314111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.31411 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.074889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.0749 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1762.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.028400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.0284 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.834800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.8348 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.525800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.5258 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1784.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.896900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.8969 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.371700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.3717 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.189700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.1897 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1798.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 50.059222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.0592 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -12.487333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4873 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -18.871222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8712 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1819.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 53.249444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.2494 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.034667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.0347 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -12.659333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.6593 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1836.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 59.474000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.4740 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -13.510000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.5100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -14.096190 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.0962 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1860.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 56.457300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.4573 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -17.627200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.6272 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.447600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4476 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1879.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 61.054889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.0549 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.110667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.1107 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.322333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.3223 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1893.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 58.453900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.4539 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.396400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3964 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.487100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.48710 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1915.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 63.563833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.5638 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -15.171500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.1715 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -7.388167 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.38817 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1925.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 65.488667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.4887 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.033444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.0334 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.362778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.3628 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1937.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 68.041375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 68.0414 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -11.293250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.2933 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.326625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.32663 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1951.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 69.916444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 69.9164 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.446111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.4461 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.722556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.7226 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1963.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 65.490556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.4906 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.159444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.15944 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.783667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.7837 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1980.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 68.563706 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 68.5637 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -4.633647 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.63365 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -8.769824 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.76982 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2000.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 63.566250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.5663 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -1.899750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.89975 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -10.493250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4933 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 65.085000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 65.0850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.363700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.36370 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.290700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2907 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2022.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 60.624810 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.6248 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 2.112238 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.11224 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -9.044524 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.04452 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2046.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 61.369667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.3697 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 7.704444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.70444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.031889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.0319 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2060.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 63.422647 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.4226 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 7.009235 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.00924 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -7.986824 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.98682 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2080.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 62.269900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.2699 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.467700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.4677 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.498300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4983 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2095.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 57.237400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.2374 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.366300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.3663 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.991300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.9913 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2110.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 56.056286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.0563 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 7.785429 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.78543 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -6.305762 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.30576 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2134.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 59.575700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.5757 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.390800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.3908 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.493600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.49360 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2156.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 54.803538 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.8035 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 14.441385 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.4414 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -9.473385 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.47338 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2180.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.358600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.3586 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.243300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.2433 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.446000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.44600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2199.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 55.776071 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.7761 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 12.045643 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.0456 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -1.747357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.74736 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2217.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.763100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.7631 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 15.091800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.0918 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.414000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.41400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2239.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.746800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.7468 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.442900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.4429 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.641300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.64130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2261.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.927000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.9270 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.723100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.72310 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.909600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.90960 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2283.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 52.750529 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.7505 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 14.868471 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.8685 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 5.168941 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.16894 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2303.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.800100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.8001 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.706600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.7066 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.541800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.54180 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2322.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.816900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.8169 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.072900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.0729 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.571400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.57140 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2337.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 47.846600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.8466 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.664400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.6644 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.486200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.48620 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2351.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 46.030529 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.0305 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 18.598176 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.5982 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 6.494176 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.49418 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2371.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 42.246900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.2469 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.871000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.8710 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.050700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.05070 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2393.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.297500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2975 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.465200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.4652 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.203400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.20340 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2415.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.754900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.7549 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 16.859100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.8591 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.023500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.02350 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2434.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 38.317444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.3174 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.482444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.4824 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 5.025889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.02589 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2451.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 36.884500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.8845 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.800700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.8007 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.040400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.04040 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2466.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 37.002250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.0023 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 14.910875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.9109 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 11.420375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.4204 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2477.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 35.813000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.8130 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 19.096100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.0961 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.932900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.93290 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2499.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 30.732800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7328 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.977200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.9772 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.509800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.50980 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2521.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 33.258200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 33.2582 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.279100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.2791 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.410400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.4104 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 32.766750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.7668 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 11.379000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.3790 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 14.502000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.5020 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2557.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 36.038300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.0383 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.922400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.92240 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 15.284300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.2843 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2574.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 39.266750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.2668 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 8.232250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.23225 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 12.960250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.9603 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2581.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.335300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.3353 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.773000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.77300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.099100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.0991 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2598.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 46.146250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.1463 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 7.883250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.88325 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 10.902500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.9025 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2605.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.044889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.0449 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 7.512667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.51267 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.013889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.0139 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2619.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 52.669333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.6693 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.738111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.7381 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.123000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.1230 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2631.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 56.694000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.6940 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 9.761000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.76100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 8.099222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.09922 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2643.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 60.314700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.3147 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.395000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.3950 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.098200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.09820 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2662.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 62.083250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.0833 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 13.709375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.7094 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 6.772875 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.77288 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2673.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 67.200286 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 67.2003 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 12.988143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.9881 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 7.683857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 7.68386 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2691.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 69.100333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 69.1003 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 16.410667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.4107 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 5.140222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.14022 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2707.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 72.697200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 72.6972 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 15.166400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.1664 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.830500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.83050 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2726.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 76.355231 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 76.3552 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 18.426154 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.4262 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 5.845154 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.84515 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2750.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 78.603400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 78.6034 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 18.403800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.4038 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.321600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.321600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2765.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 83.109444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 83.1094 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 18.721000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 18.7210 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 1.340778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.34078 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2777.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 86.519556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 86.5196 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 22.344444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.3444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.124000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.124000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 1383 atoms have been selected out of 2794 SELRPN: 2794 atoms have been selected out of 2794 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 1383 exclusions and 0 interactions(1-4) %atoms " -7 -HIS -HN " and " -7 -HIS -HB1 " only 0.09 A apart %atoms " -31 -VAL -HN " and " -31 -VAL -HG23" only 0.08 A apart %atoms " -54 -ARG -HA " and " -54 -ARG -HH22" only 0.07 A apart %atoms " -59 -LEU -HN " and " -59 -LEU -HB2 " only 0.03 A apart %atoms " -62 -CYS -HN " and " -62 -CYS -HB1 " only 0.07 A apart %atoms " -68 -LYS -HN " and " -68 -LYS -HZ2 " only 0.06 A apart %atoms " -74 -LYS -HE1 " and " -74 -LYS -HZ3 " only 0.10 A apart %atoms " -136 -LYS -HB2 " and " -136 -LYS -HD1 " only 0.06 A apart %atoms " -143 -PHE -HE1 " and " -143 -PHE -HZ " only 0.05 A apart %atoms " -144 -ILE -HB " and " -144 -ILE -HG22" only 0.07 A apart %atoms " -148 -LYS -HE1 " and " -148 -LYS -HE2 " only 0.07 A apart %atoms " -159 -GLY -HN " and " -159 -GLY -HA2 " only 0.05 A apart %atoms " -168 -VAL -HG11" and " -168 -VAL -HG23" only 0.03 A apart NBONDS: found 161995 intra-atom interactions NBONDS: found 13 nonbonded violations %atoms " -34 -VAL -HB " and " -34 -VAL -HG22" only 0.07 A apart %atoms " -47 -LEU -HA " and " -47 -LEU -HB1 " only 0.05 A apart %atoms " -70 -GLU -HA " and " -70 -GLU -HG1 " only 0.06 A apart %atoms " -75 -VAL -HB " and " -75 -VAL -HG12" only 0.06 A apart %atoms " -87 -LEU -HB1 " and " -87 -LEU -HD21" only 0.09 A apart %atoms " -97 -ARG -HG1 " and " -97 -ARG -HD2 " only 0.03 A apart %atoms " -114 -LYS -HD2 " and " -114 -LYS -HZ1 " only 0.08 A apart %atoms " -119 -ILE -HG11" and " -119 -ILE -HG21" only 0.09 A apart NBONDS: found 161278 intra-atom interactions NBONDS: found 8 nonbonded violations NBONDS: found 148472 intra-atom interactions %atoms " -30 -ASP -HA " and " -30 -ASP -HB1 " only 0.05 A apart NBONDS: found 152443 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 147565 intra-atom interactions NBONDS: found 149609 intra-atom interactions NBONDS: found 150041 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0004 ----------------------- | Etotal =743150.060 grad(E)=579.824 E(BOND)=121606.221 E(ANGL)=347886.665 | | E(VDW )=273657.174 | ------------------------------------------------------------------------------- NBONDS: found 150682 intra-atom interactions NBONDS: found 150919 intra-atom interactions NBONDS: found 151050 intra-atom interactions NBONDS: found 151218 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0006 ----------------------- | Etotal =251362.816 grad(E)=341.612 E(BOND)=40733.174 E(ANGL)=85359.028 | | E(VDW )=125270.614 | ------------------------------------------------------------------------------- NBONDS: found 151129 intra-atom interactions NBONDS: found 151123 intra-atom interactions NBONDS: found 151153 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0006 ----------------------- | Etotal =207697.291 grad(E)=310.576 E(BOND)=35081.371 E(ANGL)=62109.109 | | E(VDW )=110506.811 | ------------------------------------------------------------------------------- NBONDS: found 151142 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0005 ----------------------- | Etotal =201417.906 grad(E)=306.524 E(BOND)=34538.947 E(ANGL)=58530.309 | | E(VDW )=108348.651 | ------------------------------------------------------------------------------- NBONDS: found 151160 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0006 ----------------------- | Etotal =200804.024 grad(E)=306.606 E(BOND)=34768.923 E(ANGL)=58387.361 | | E(VDW )=107647.740 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=885682.460 E(kin)=1260.215 temperature=305.697 | | Etotal =884422.245 grad(E)=582.682 E(BOND)=34768.923 E(ANGL)=58387.361 | | E(IMPR)=791265.960 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=576548.856 E(kin)=88441.168 temperature=21453.661 | | Etotal =488107.688 grad(E)=346.899 E(BOND)=58340.165 E(ANGL)=185914.539 | | E(IMPR)=243852.984 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.16628 -2.09371 -14.22751 velocity [A/ps] : -2.00158 0.23354 0.43122 ang. mom. [amu A/ps] :-569797.76923 10797.66494 436692.86612 kin. ener. [Kcal/mol] : 140.37678 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: found 150052 intra-atom interactions NBONDS: found 150044 intra-atom interactions NBONDS: found 150211 intra-atom interactions NBONDS: found 150508 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =482442.828 grad(E)=347.464 E(BOND)=51092.764 E(ANGL)=114428.040 | | E(IMPR)=241453.171 E(VDW )=75468.852 | ------------------------------------------------------------------------------- NBONDS: found 150742 intra-atom interactions NBONDS: found 150606 intra-atom interactions NBONDS: found 150581 intra-atom interactions --------------- cycle= 20 ------ stepsize= -0.0001 ----------------------- | Etotal =317791.543 grad(E)=268.108 E(BOND)=36780.150 E(ANGL)=63491.675 | | E(IMPR)=140927.554 E(VDW )=76592.165 | ------------------------------------------------------------------------------- NBONDS: found 150658 intra-atom interactions NBONDS: found 150636 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =244453.274 grad(E)=253.064 E(BOND)=32003.352 E(ANGL)=40029.422 | | E(IMPR)=100396.262 E(VDW )=72024.238 | ------------------------------------------------------------------------------- NBONDS: found 150638 intra-atom interactions NBONDS: found 150630 intra-atom interactions NBONDS: found 150673 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0000 ----------------------- | Etotal =204733.809 grad(E)=251.764 E(BOND)=31020.417 E(ANGL)=31194.117 | | E(IMPR)=73071.255 E(VDW )=69448.020 | ------------------------------------------------------------------------------- NBONDS: found 150650 intra-atom interactions NBONDS: found 150586 intra-atom interactions NBONDS: found 150621 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0002 ----------------------- | Etotal =183745.363 grad(E)=248.184 E(BOND)=31040.591 E(ANGL)=24608.783 | | E(IMPR)=61346.595 E(VDW )=66749.394 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=184958.769 E(kin)=1213.406 temperature=294.342 | | Etotal =183745.363 grad(E)=248.184 E(BOND)=31040.591 E(ANGL)=24608.783 | | E(IMPR)=61346.595 E(VDW )=66749.394 | ------------------------------------------------------------------------------- NBONDS: found 150582 intra-atom interactions NBONDS: found 150522 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=179692.510 E(kin)=3914.733 temperature=949.618 | | Etotal =175777.777 grad(E)=245.249 E(BOND)=31191.786 E(ANGL)=22453.362 | | E(IMPR)=55926.322 E(VDW )=66206.307 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.17784 -2.07818 -14.21166 velocity [A/ps] : 0.04122 -0.24276 -0.24867 ang. mom. [amu A/ps] : 10944.96191 -60452.33821 -1008.00089 kin. ener. [Kcal/mol] : 4.04818 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 147398 intra-atom interactions NBONDS: found 148343 intra-atom interactions NBONDS: found 148298 intra-atom interactions NBONDS: found 148261 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0003 ----------------------- | Etotal =52672.035 grad(E)=25.576 E(BOND)=1367.933 E(ANGL)=11445.530 | | E(IMPR)=39858.573 E(VDW )=0.000 | ------------------------------------------------------------------------------- NBONDS: found 148273 intra-atom interactions NBONDS: found 148346 intra-atom interactions NBONDS: found 148383 intra-atom interactions NBONDS: found 148302 intra-atom interactions NBONDS: found 148375 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0007 ----------------------- | Etotal =29638.323 grad(E)=55.995 E(BOND)=1226.730 E(ANGL)=11348.152 | | E(IMPR)=17045.537 E(VDW )=17.904 | ------------------------------------------------------------------------------- NBONDS: found 148396 intra-atom interactions NBONDS: found 148343 intra-atom interactions NBONDS: found 148264 intra-atom interactions NBONDS: found 148376 intra-atom interactions --------------- cycle= 75 ------ stepsize= 0.0000 ----------------------- | Etotal =9281.223 grad(E)=27.964 E(BOND)=442.892 E(ANGL)=3528.992 | | E(IMPR)=5308.758 E(VDW )=0.580 | ------------------------------------------------------------------------------- NBONDS: found 148313 intra-atom interactions NBONDS: found 148324 intra-atom interactions NBONDS: found 148325 intra-atom interactions NBONDS: found 148294 intra-atom interactions NBONDS: found 148337 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0002 ----------------------- | Etotal =1777.890 grad(E)=11.071 E(BOND)=24.571 E(ANGL)=1535.767 | | E(IMPR)=217.536 E(VDW )=0.016 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=3052.021 E(kin)=1274.131 temperature=309.073 | | Etotal =1777.890 grad(E)=11.071 E(BOND)=24.571 E(ANGL)=1535.767 | | E(IMPR)=217.536 E(VDW )=0.016 | ------------------------------------------------------------------------------- NBONDS: found 148314 intra-atom interactions NBONDS: found 148256 intra-atom interactions NBONDS: found 148335 intra-atom interactions NBONDS: found 148297 intra-atom interactions NBONDS: found 148260 intra-atom interactions NBONDS: found 148262 intra-atom interactions NBONDS: found 148258 intra-atom interactions NBONDS: found 148255 intra-atom interactions NBONDS: found 148288 intra-atom interactions NBONDS: found 148232 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2479.516 E(kin)=1197.464 temperature=290.475 | | Etotal =1282.052 grad(E)=30.960 E(BOND)=247.297 E(ANGL)=961.650 | | E(IMPR)=71.981 E(VDW )=1.124 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.17469 -2.08135 -14.20501 velocity [A/ps] : 0.03485 0.02501 -0.09636 ang. mom. [amu A/ps] : 5692.45229 87507.37455 -88896.19125 kin. ener. [Kcal/mol] : 0.36773 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 148278 intra-atom interactions NBONDS: found 148260 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0011 ----------------------- | Etotal =148.651 grad(E)=2.917 E(BOND)=1.140 E(ANGL)=37.754 | | E(DIHE)=54.123 E(IMPR)=1.924 E(VDW )=53.710 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= 0.0011 ----------------------- | Etotal =101.439 grad(E)=2.751 E(BOND)=0.794 E(ANGL)=37.340 | | E(DIHE)=23.419 E(IMPR)=1.659 E(VDW )=38.226 | ------------------------------------------------------------------------------- --------------- cycle= 150 ------ stepsize= 0.0011 ----------------------- | Etotal =88.365 grad(E)=2.636 E(BOND)=0.664 E(ANGL)=36.585 | | E(DIHE)=11.778 E(IMPR)=1.605 E(VDW )=37.732 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0009 ----------------------- | Etotal =86.157 grad(E)=2.609 E(BOND)=0.629 E(ANGL)=36.512 | | E(DIHE)=11.002 E(IMPR)=1.513 E(VDW )=36.501 | ------------------------------------------------------------------------------- NBONDS: found 148297 intra-atom interactions --------------- cycle= 250 ------ stepsize= 0.0012 ----------------------- | Etotal =85.075 grad(E)=2.613 E(BOND)=0.631 E(ANGL)=36.528 | | E(DIHE)=9.897 E(IMPR)=1.508 E(VDW )=36.512 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0008 ----------------------- | Etotal =84.514 grad(E)=2.612 E(BOND)=0.635 E(ANGL)=36.503 | | E(DIHE)=9.070 E(IMPR)=1.506 E(VDW )=36.800 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0010 ----------------------- | Etotal =84.482 grad(E)=2.610 E(BOND)=0.636 E(ANGL)=36.500 | | E(DIHE)=9.044 E(IMPR)=1.506 E(VDW )=36.796 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0008 ----------------------- | Etotal =84.480 grad(E)=2.611 E(BOND)=0.637 E(ANGL)=36.499 | | E(DIHE)=9.058 E(IMPR)=1.506 E(VDW )=36.779 | ------------------------------------------------------------------------------- --------------- cycle= 450 ------ stepsize= 0.0003 ----------------------- | Etotal =84.478 grad(E)=2.614 E(BOND)=0.643 E(ANGL)=36.500 | | E(DIHE)=8.872 E(IMPR)=1.509 E(VDW )=36.955 | ------------------------------------------------------------------------------- --------------- cycle= 500 ------ stepsize= 0.0007 ----------------------- | Etotal =82.538 grad(E)=2.602 E(BOND)=0.601 E(ANGL)=36.508 | | E(DIHE)=7.799 E(IMPR)=1.498 E(VDW )=36.132 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1349.044 E(kin)=1266.506 temperature=307.223 | | Etotal =82.538 grad(E)=2.602 E(BOND)=0.601 E(ANGL)=36.508 | | E(DIHE)=7.799 E(IMPR)=1.498 E(VDW )=36.132 | ------------------------------------------------------------------------------- NBONDS: found 148254 intra-atom interactions NBONDS: found 148230 intra-atom interactions NBONDS: found 148224 intra-atom interactions NBONDS: found 148302 intra-atom interactions NBONDS: found 148348 intra-atom interactions NBONDS: found 148366 intra-atom interactions NBONDS: found 148331 intra-atom interactions NBONDS: found 148335 intra-atom interactions NBONDS: found 148335 intra-atom interactions NBONDS: found 148310 intra-atom interactions NBONDS: found 148387 intra-atom interactions NBONDS: found 148299 intra-atom interactions NBONDS: found 148266 intra-atom interactions NBONDS: found 148241 intra-atom interactions NBONDS: found 148274 intra-atom interactions NBONDS: found 148282 intra-atom interactions NBONDS: found 148267 intra-atom interactions NBONDS: found 148320 intra-atom interactions NBONDS: found 148261 intra-atom interactions NBONDS: found 148372 intra-atom interactions NBONDS: found 148323 intra-atom interactions NBONDS: found 148295 intra-atom interactions NBONDS: found 148315 intra-atom interactions NBONDS: found 148231 intra-atom interactions NBONDS: found 148302 intra-atom interactions NBONDS: found 148286 intra-atom interactions NBONDS: found 148329 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2507.595 E(kin)=1378.685 temperature=334.435 | | Etotal =1128.910 grad(E)=32.186 E(BOND)=198.082 E(ANGL)=693.066 | | E(DIHE)=59.239 E(IMPR)=118.105 E(VDW )=60.417 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.96884 -1.62122 -13.94142 velocity [A/ps] : -0.32596 0.19652 -0.44194 ang. mom. [amu A/ps] : -7230.29878 15726.87485 8476.70422 kin. ener. [Kcal/mol] : 0.57891 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 4149 --------------- cycle= 50 ------ stepsize= 0.0004 ----------------------- | Etotal =110.885 grad(E)=2.734 E(BOND)=0.713 E(ANGL)=37.076 | | E(DIHE)=30.792 E(IMPR)=1.704 E(VDW )=40.601 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= 0.0003 ----------------------- | Etotal =92.783 grad(E)=2.639 E(BOND)=0.628 E(ANGL)=36.691 | | E(DIHE)=16.035 E(IMPR)=1.499 E(VDW )=37.930 | ------------------------------------------------------------------------------- NBONDS: found 148361 intra-atom interactions --------------- cycle= 150 ------ stepsize= 0.0002 ----------------------- | Etotal =85.735 grad(E)=2.621 E(BOND)=0.621 E(ANGL)=36.569 | | E(DIHE)=10.354 E(IMPR)=1.534 E(VDW )=36.658 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0004 ----------------------- | Etotal =82.913 grad(E)=2.596 E(BOND)=0.604 E(ANGL)=36.558 | | E(DIHE)=7.536 E(IMPR)=1.509 E(VDW )=36.705 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= -0.0001 ----------------------- | Etotal =81.958 grad(E)=2.587 E(BOND)=0.592 E(ANGL)=36.495 | | E(DIHE)=7.699 E(IMPR)=1.500 E(VDW )=35.672 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0003 ----------------------- | Etotal =81.898 grad(E)=2.586 E(BOND)=0.591 E(ANGL)=36.496 | | E(DIHE)=7.614 E(IMPR)=1.497 E(VDW )=35.700 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= -0.0003 ----------------------- | Etotal =81.894 grad(E)=2.586 E(BOND)=0.591 E(ANGL)=36.496 | | E(DIHE)=7.621 E(IMPR)=1.497 E(VDW )=35.689 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0009 ----------------------- | Etotal =81.894 grad(E)=2.586 E(BOND)=0.591 E(ANGL)=36.496 | | E(DIHE)=7.621 E(IMPR)=1.497 E(VDW )=35.689 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. Number of violations greater 0.020: 0 RMS deviation= 0.001 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. Number of violations greater 5.000: 0 RMS deviation= 0.275 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 2794 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 1411 atoms have been selected out of 2794 SHOW: average of selected elements = 37.643388 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_14_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1630904 current use = 0 bytes HEAP: maximum overhead = 904 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1630904 bytes Maximum dynamic memory overhead: 904 bytes Program started at: 22:29:17 on 19-Jan-06 Program stopped at: 22:30:01 on 19-Jan-06 CPU time used: 43.9100 seconds ============================================================