============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 22:37:22 on 19-Jan-06 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_5.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_5_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/francis/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) = end SEGMNT: 173 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 2794(MAXA= 40000) NBOND= 2828(MAXB= 40000) -> NTHETA= 5113(MAXT= 80000) NGRP= 175(MAXGRP= 40000) -> NPHI= 4293(MAXP= 80000) NIMPHI= 1491(MAXIMP= 40000) -> NNB= 984(MAXNB= 40000) CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER STRUCTURE FROM CYANA 2.1 14-JAN-06 1PDB COOR>EXPDTA NMR, 20 STRUCTURES COOR>REMARK model 5 COOR>ATOM 1 N GLY A 1 40.519 8.914 -77.924 1.00 71.25 %READC-ERR: atom 1 GLY H not found in molecular structure %READC-ERR: atom 1 GLY 2HA not found in molecular structure %READC-ERR: atom 1 GLY 3HA not found in molecular structure %READC-ERR: atom 2 HIS H not found in molecular structure %READC-ERR: atom 2 HIS 2HB not found in molecular structure %READC-ERR: atom 2 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS H not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS H not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS H not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS H not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS H not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 8 LEU H not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 GLU H not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 10 CYS H not found in molecular structure %READC-ERR: atom 10 CYS 2HB not found in molecular structure %READC-ERR: atom 10 CYS 3HB not found in molecular structure %READC-ERR: atom 11 SER H not found in molecular structure %READC-ERR: atom 11 SER 2HB not found in molecular structure %READC-ERR: atom 11 SER 3HB not found in molecular structure %READC-ERR: atom 12 SER H not found in molecular structure %READC-ERR: atom 12 SER 2HB not found in molecular structure %READC-ERR: atom 12 SER 3HB not found in molecular structure %READC-ERR: atom 13 ASP H not found in molecular structure %READC-ERR: atom 13 ASP 2HB not found in molecular structure %READC-ERR: atom 13 ASP 3HB not found in molecular structure %READC-ERR: atom 14 SER H not found in molecular structure %READC-ERR: atom 14 SER 2HB not found in molecular structure %READC-ERR: atom 14 SER 3HB not found in molecular structure %READC-ERR: atom 15 LEU H not found in molecular structure %READC-ERR: atom 15 LEU 2HB not found in molecular structure %READC-ERR: atom 15 LEU 3HB not found in molecular structure %READC-ERR: atom 15 LEU 1HD1 not found in molecular structure %READC-ERR: atom 15 LEU 2HD1 not found in molecular structure %READC-ERR: atom 15 LEU 3HD1 not found in molecular structure %READC-ERR: atom 15 LEU 1HD2 not found in molecular structure %READC-ERR: atom 15 LEU 2HD2 not found in molecular structure %READC-ERR: atom 15 LEU 3HD2 not found in molecular structure %READC-ERR: atom 16 GLN H not found in molecular structure %READC-ERR: atom 16 GLN 2HB not found in molecular structure %READC-ERR: atom 16 GLN 3HB not found in molecular structure %READC-ERR: atom 16 GLN 2HG not found in molecular structure %READC-ERR: atom 16 GLN 3HG not found in molecular structure %READC-ERR: atom 16 GLN 1HE2 not found in molecular structure %READC-ERR: atom 16 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 LEU H not found in molecular structure %READC-ERR: atom 17 LEU 2HB not found in molecular structure %READC-ERR: atom 17 LEU 3HB not found in molecular structure %READC-ERR: atom 17 LEU 1HD1 not found in molecular structure %READC-ERR: atom 17 LEU 2HD1 not found in molecular structure %READC-ERR: atom 17 LEU 3HD1 not found in molecular structure %READC-ERR: atom 17 LEU 1HD2 not found in molecular structure %READC-ERR: atom 17 LEU 2HD2 not found in molecular structure %READC-ERR: atom 17 LEU 3HD2 not found in molecular structure %READC-ERR: atom 18 HIS H not found in molecular structure %READC-ERR: atom 18 HIS 2HB not found in molecular structure %READC-ERR: atom 18 HIS 3HB not found in molecular structure %READC-ERR: atom 19 ASN H not found in molecular structure %READC-ERR: atom 19 ASN 2HB not found in molecular structure %READC-ERR: atom 19 ASN 3HB not found in molecular structure %READC-ERR: atom 19 ASN 1HD2 not found in molecular structure %READC-ERR: atom 19 ASN 2HD2 not found in molecular structure %READC-ERR: atom 20 VAL H not found in molecular structure %READC-ERR: atom 20 VAL 1HG1 not found in molecular structure %READC-ERR: atom 20 VAL 2HG1 not found in molecular structure %READC-ERR: atom 20 VAL 3HG1 not found in molecular structure %READC-ERR: atom 20 VAL 1HG2 not found in molecular structure %READC-ERR: atom 20 VAL 2HG2 not found in molecular structure %READC-ERR: atom 20 VAL 3HG2 not found in molecular structure %READC-ERR: atom 21 PHE H not found in molecular structure %READC-ERR: atom 21 PHE 2HB not found in molecular structure %READC-ERR: atom 21 PHE 3HB not found in molecular structure %READC-ERR: atom 22 VAL H not found in molecular structure %READC-ERR: atom 22 VAL 1HG1 not found in molecular structure %READC-ERR: atom 22 VAL 2HG1 not found in molecular structure %READC-ERR: atom 22 VAL 3HG1 not found in molecular structure %READC-ERR: atom 22 VAL 1HG2 not found in molecular structure %READC-ERR: atom 22 VAL 2HG2 not found in molecular structure %READC-ERR: atom 22 VAL 3HG2 not found in molecular structure %READC-ERR: atom 23 TYR H not found in molecular structure %READC-ERR: atom 23 TYR 2HB not found in molecular structure %READC-ERR: atom 23 TYR 3HB not found in molecular structure %READC-ERR: atom 24 GLY H not found in molecular structure %READC-ERR: atom 24 GLY 2HA not found in molecular structure %READC-ERR: atom 24 GLY 3HA not found in molecular structure %READC-ERR: atom 25 SER H not found in molecular structure %READC-ERR: atom 25 SER 2HB not found in molecular structure %READC-ERR: atom 25 SER 3HB not found in molecular structure %READC-ERR: atom 26 PHE H not found in molecular structure %READC-ERR: atom 26 PHE 2HB not found in molecular structure %READC-ERR: atom 26 PHE 3HB not found in molecular structure %READC-ERR: atom 27 GLN H not found in molecular structure %READC-ERR: atom 27 GLN 2HB not found in molecular structure %READC-ERR: atom 27 GLN 3HB not found in molecular structure %READC-ERR: atom 27 GLN 2HG not found in molecular structure %READC-ERR: atom 27 GLN 3HG not found in molecular structure %READC-ERR: atom 27 GLN 1HE2 not found in molecular structure %READC-ERR: atom 27 GLN 2HE2 not found in molecular structure %READC-ERR: atom 28 ASP H not found in molecular structure %READC-ERR: atom 28 ASP 2HB not found in molecular structure %READC-ERR: atom 28 ASP 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HB not found in molecular structure %READC-ERR: atom 29 PRO 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HG not found in molecular structure %READC-ERR: atom 29 PRO 3HG not found in molecular structure %READC-ERR: atom 29 PRO 2HD not found in molecular structure %READC-ERR: atom 29 PRO 3HD not found in molecular structure %READC-ERR: atom 30 ASP H not found in molecular structure %READC-ERR: atom 30 ASP 2HB not found in molecular structure %READC-ERR: atom 30 ASP 3HB not found in molecular structure %READC-ERR: atom 31 VAL H not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE H not found in molecular structure %READC-ERR: atom 32 ILE 1HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG2 not found in molecular structure %READC-ERR: atom 32 ILE 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG1 not found in molecular structure %READC-ERR: atom 32 ILE 3HG1 not found in molecular structure %READC-ERR: atom 32 ILE 1HD1 not found in molecular structure %READC-ERR: atom 32 ILE 2HD1 not found in molecular structure %READC-ERR: atom 32 ILE 3HD1 not found in molecular structure %READC-ERR: atom 33 ASN H not found in molecular structure %READC-ERR: atom 33 ASN 2HB not found in molecular structure %READC-ERR: atom 33 ASN 3HB not found in molecular structure %READC-ERR: atom 33 ASN 1HD2 not found in molecular structure %READC-ERR: atom 33 ASN 2HD2 not found in molecular structure %READC-ERR: atom 34 VAL H not found in molecular structure %READC-ERR: atom 34 VAL 1HG1 not found in molecular structure %READC-ERR: atom 34 VAL 2HG1 not found in molecular structure %READC-ERR: atom 34 VAL 3HG1 not found in molecular structure %READC-ERR: atom 34 VAL 1HG2 not found in molecular structure %READC-ERR: atom 34 VAL 2HG2 not found in molecular structure %READC-ERR: atom 34 VAL 3HG2 not found in molecular structure %READC-ERR: atom 35 MET H not found in molecular structure %READC-ERR: atom 35 MET 2HB not found in molecular structure %READC-ERR: atom 35 MET 3HB not found in molecular structure %READC-ERR: atom 35 MET 2HG not found in molecular structure %READC-ERR: atom 35 MET 3HG not found in molecular structure %READC-ERR: atom 35 MET 1HE not found in molecular structure %READC-ERR: atom 35 MET 2HE not found in molecular structure %READC-ERR: atom 35 MET 3HE not found in molecular structure %READC-ERR: atom 36 LEU H not found in molecular structure %READC-ERR: atom 36 LEU 2HB not found in molecular structure %READC-ERR: atom 36 LEU 3HB not found in molecular structure %READC-ERR: atom 36 LEU 1HD1 not found in molecular structure %READC-ERR: atom 36 LEU 2HD1 not found in molecular structure %READC-ERR: atom 36 LEU 3HD1 not found in molecular structure %READC-ERR: atom 36 LEU 1HD2 not found in molecular structure %READC-ERR: atom 36 LEU 2HD2 not found in molecular structure %READC-ERR: atom 36 LEU 3HD2 not found in molecular structure %READC-ERR: atom 37 ASP H not found in molecular structure %READC-ERR: atom 37 ASP 2HB not found in molecular structure %READC-ERR: atom 37 ASP 3HB not found in molecular structure %READC-ERR: atom 38 ARG H not found in molecular structure %READC-ERR: atom 38 ARG 2HB not found in molecular structure %READC-ERR: atom 38 ARG 3HB not found in molecular structure %READC-ERR: atom 38 ARG 2HG not found in molecular structure %READC-ERR: atom 38 ARG 3HG not found in molecular structure %READC-ERR: atom 38 ARG 2HD not found in molecular structure %READC-ERR: atom 38 ARG 3HD not found in molecular structure %READC-ERR: atom 38 ARG 1HH1 not found in molecular structure %READC-ERR: atom 38 ARG 2HH1 not found in molecular structure %READC-ERR: atom 38 ARG 1HH2 not found in molecular structure %READC-ERR: atom 38 ARG 2HH2 not found in molecular structure %READC-ERR: atom 39 THR H not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 PRO 2HB not found in molecular structure %READC-ERR: atom 40 PRO 3HB not found in molecular structure %READC-ERR: atom 40 PRO 2HG not found in molecular structure %READC-ERR: atom 40 PRO 3HG not found in molecular structure %READC-ERR: atom 40 PRO 2HD not found in molecular structure %READC-ERR: atom 40 PRO 3HD not found in molecular structure %READC-ERR: atom 41 GLU H not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 42 ILE H not found in molecular structure %READC-ERR: atom 42 ILE 1HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG2 not found in molecular structure %READC-ERR: atom 42 ILE 3HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG1 not found in molecular structure %READC-ERR: atom 42 ILE 3HG1 not found in molecular structure %READC-ERR: atom 42 ILE 1HD1 not found in molecular structure %READC-ERR: atom 42 ILE 2HD1 not found in molecular structure %READC-ERR: atom 42 ILE 3HD1 not found in molecular structure %READC-ERR: atom 43 VAL H not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 44 SER H not found in molecular structure %READC-ERR: atom 44 SER 2HB not found in molecular structure %READC-ERR: atom 44 SER 3HB not found in molecular structure %READC-ERR: atom 45 ALA H not found in molecular structure %READC-ERR: atom 45 ALA 1HB not found in molecular structure %READC-ERR: atom 45 ALA 2HB not found in molecular structure %READC-ERR: atom 45 ALA 3HB not found in molecular structure %READC-ERR: atom 46 THR H not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 LEU H not found in molecular structure %READC-ERR: atom 47 LEU 2HB not found in molecular structure %READC-ERR: atom 47 LEU 3HB not found in molecular structure %READC-ERR: atom 47 LEU 1HD1 not found in molecular structure %READC-ERR: atom 47 LEU 2HD1 not found in molecular structure %READC-ERR: atom 47 LEU 3HD1 not found in molecular structure %READC-ERR: atom 47 LEU 1HD2 not found in molecular structure %READC-ERR: atom 47 LEU 2HD2 not found in molecular structure %READC-ERR: atom 47 LEU 3HD2 not found in molecular structure %READC-ERR: atom 48 PRO 2HB not found in molecular structure %READC-ERR: atom 48 PRO 3HB not found in molecular structure %READC-ERR: atom 48 PRO 2HG not found in molecular structure %READC-ERR: atom 48 PRO 3HG not found in molecular structure %READC-ERR: atom 48 PRO 2HD not found in molecular structure %READC-ERR: atom 48 PRO 3HD not found in molecular structure %READC-ERR: atom 49 GLY H not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY 3HA not found in molecular structure %READC-ERR: atom 50 PHE H not found in molecular structure %READC-ERR: atom 50 PHE 2HB not found in molecular structure %READC-ERR: atom 50 PHE 3HB not found in molecular structure %READC-ERR: atom 51 GLN H not found in molecular structure %READC-ERR: atom 51 GLN 2HB not found in molecular structure %READC-ERR: atom 51 GLN 3HB not found in molecular structure %READC-ERR: atom 51 GLN 2HG not found in molecular structure %READC-ERR: atom 51 GLN 3HG not found in molecular structure %READC-ERR: atom 51 GLN 1HE2 not found in molecular structure %READC-ERR: atom 51 GLN 2HE2 not found in molecular structure %READC-ERR: atom 52 ARG H not found in molecular structure %READC-ERR: atom 52 ARG 2HB not found in molecular structure %READC-ERR: atom 52 ARG 3HB not found in molecular structure %READC-ERR: atom 52 ARG 2HG not found in molecular structure %READC-ERR: atom 52 ARG 3HG not found in molecular structure %READC-ERR: atom 52 ARG 2HD not found in molecular structure %READC-ERR: atom 52 ARG 3HD not found in molecular structure %READC-ERR: atom 52 ARG 1HH1 not found in molecular structure %READC-ERR: atom 52 ARG 2HH1 not found in molecular structure %READC-ERR: atom 52 ARG 1HH2 not found in molecular structure %READC-ERR: atom 52 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 PHE H not found in molecular structure %READC-ERR: atom 53 PHE 2HB not found in molecular structure %READC-ERR: atom 53 PHE 3HB not found in molecular structure %READC-ERR: atom 54 ARG H not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 55 LEU H not found in molecular structure %READC-ERR: atom 55 LEU 2HB not found in molecular structure %READC-ERR: atom 55 LEU 3HB not found in molecular structure %READC-ERR: atom 55 LEU 1HD1 not found in molecular structure %READC-ERR: atom 55 LEU 2HD1 not found in molecular structure %READC-ERR: atom 55 LEU 3HD1 not found in molecular structure %READC-ERR: atom 55 LEU 1HD2 not found in molecular structure %READC-ERR: atom 55 LEU 2HD2 not found in molecular structure %READC-ERR: atom 55 LEU 3HD2 not found in molecular structure %READC-ERR: atom 56 LYS H not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 GLY H not found in molecular structure %READC-ERR: atom 57 GLY 2HA not found in molecular structure %READC-ERR: atom 57 GLY 3HA not found in molecular structure %READC-ERR: atom 58 ARG H not found in molecular structure %READC-ERR: atom 58 ARG 2HB not found in molecular structure %READC-ERR: atom 58 ARG 3HB not found in molecular structure %READC-ERR: atom 58 ARG 2HG not found in molecular structure %READC-ERR: atom 58 ARG 3HG not found in molecular structure %READC-ERR: atom 58 ARG 2HD not found in molecular structure %READC-ERR: atom 58 ARG 3HD not found in molecular structure %READC-ERR: atom 58 ARG 1HH1 not found in molecular structure %READC-ERR: atom 58 ARG 2HH1 not found in molecular structure %READC-ERR: atom 58 ARG 1HH2 not found in molecular structure %READC-ERR: atom 58 ARG 2HH2 not found in molecular structure %READC-ERR: atom 59 LEU H not found in molecular structure %READC-ERR: atom 59 LEU 2HB not found in molecular structure %READC-ERR: atom 59 LEU 3HB not found in molecular structure %READC-ERR: atom 59 LEU 1HD1 not found in molecular structure %READC-ERR: atom 59 LEU 2HD1 not found in molecular structure %READC-ERR: atom 59 LEU 3HD1 not found in molecular structure %READC-ERR: atom 59 LEU 1HD2 not found in molecular structure %READC-ERR: atom 59 LEU 2HD2 not found in molecular structure %READC-ERR: atom 59 LEU 3HD2 not found in molecular structure %READC-ERR: atom 60 TYR H not found in molecular structure %READC-ERR: atom 60 TYR 2HB not found in molecular structure %READC-ERR: atom 60 TYR 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HB not found in molecular structure %READC-ERR: atom 61 PRO 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HG not found in molecular structure %READC-ERR: atom 61 PRO 3HG not found in molecular structure %READC-ERR: atom 61 PRO 2HD not found in molecular structure %READC-ERR: atom 61 PRO 3HD not found in molecular structure %READC-ERR: atom 62 CYS H not found in molecular structure %READC-ERR: atom 62 CYS 2HB not found in molecular structure %READC-ERR: atom 62 CYS 3HB not found in molecular structure %READC-ERR: atom 63 ILE H not found in molecular structure %READC-ERR: atom 63 ILE 1HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG2 not found in molecular structure %READC-ERR: atom 63 ILE 3HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG1 not found in molecular structure %READC-ERR: atom 63 ILE 3HG1 not found in molecular structure %READC-ERR: atom 63 ILE 1HD1 not found in molecular structure %READC-ERR: atom 63 ILE 2HD1 not found in molecular structure %READC-ERR: atom 63 ILE 3HD1 not found in molecular structure %READC-ERR: atom 64 VAL H not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 PRO 2HB not found in molecular structure %READC-ERR: atom 65 PRO 3HB not found in molecular structure %READC-ERR: atom 65 PRO 2HG not found in molecular structure %READC-ERR: atom 65 PRO 3HG not found in molecular structure %READC-ERR: atom 65 PRO 2HD not found in molecular structure %READC-ERR: atom 65 PRO 3HD not found in molecular structure %READC-ERR: atom 66 SER H not found in molecular structure %READC-ERR: atom 66 SER 2HB not found in molecular structure %READC-ERR: atom 66 SER 3HB not found in molecular structure %READC-ERR: atom 67 GLU H not found in molecular structure %READC-ERR: atom 67 GLU 2HB not found in molecular structure %READC-ERR: atom 67 GLU 3HB not found in molecular structure %READC-ERR: atom 67 GLU 2HG not found in molecular structure %READC-ERR: atom 67 GLU 3HG not found in molecular structure %READC-ERR: atom 68 LYS H not found in molecular structure %READC-ERR: atom 68 LYS 2HB not found in molecular structure %READC-ERR: atom 68 LYS 3HB not found in molecular structure %READC-ERR: atom 68 LYS 2HG not found in molecular structure %READC-ERR: atom 68 LYS 3HG not found in molecular structure %READC-ERR: atom 68 LYS 2HD not found in molecular structure %READC-ERR: atom 68 LYS 3HD not found in molecular structure %READC-ERR: atom 68 LYS 2HE not found in molecular structure %READC-ERR: atom 68 LYS 3HE not found in molecular structure %READC-ERR: atom 68 LYS 1HZ not found in molecular structure %READC-ERR: atom 68 LYS 2HZ not found in molecular structure %READC-ERR: atom 68 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 GLY H not found in molecular structure %READC-ERR: atom 69 GLY 2HA not found in molecular structure %READC-ERR: atom 69 GLY 3HA not found in molecular structure %READC-ERR: atom 70 GLU H not found in molecular structure %READC-ERR: atom 70 GLU 2HB not found in molecular structure %READC-ERR: atom 70 GLU 3HB not found in molecular structure %READC-ERR: atom 70 GLU 2HG not found in molecular structure %READC-ERR: atom 70 GLU 3HG not found in molecular structure %READC-ERR: atom 71 VAL H not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 72 HIS H not found in molecular structure %READC-ERR: atom 72 HIS 2HB not found in molecular structure %READC-ERR: atom 72 HIS 3HB not found in molecular structure %READC-ERR: atom 73 GLY H not found in molecular structure %READC-ERR: atom 73 GLY 2HA not found in molecular structure %READC-ERR: atom 73 GLY 3HA not found in molecular structure %READC-ERR: atom 74 LYS H not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 75 VAL H not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 76 LEU H not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 77 MET H not found in molecular structure %READC-ERR: atom 77 MET 2HB not found in molecular structure %READC-ERR: atom 77 MET 3HB not found in molecular structure %READC-ERR: atom 77 MET 2HG not found in molecular structure %READC-ERR: atom 77 MET 3HG not found in molecular structure %READC-ERR: atom 77 MET 1HE not found in molecular structure %READC-ERR: atom 77 MET 2HE not found in molecular structure %READC-ERR: atom 77 MET 3HE not found in molecular structure %READC-ERR: atom 78 GLY H not found in molecular structure %READC-ERR: atom 78 GLY 2HA not found in molecular structure %READC-ERR: atom 78 GLY 3HA not found in molecular structure %READC-ERR: atom 79 VAL H not found in molecular structure %READC-ERR: atom 79 VAL 1HG1 not found in molecular structure %READC-ERR: atom 79 VAL 2HG1 not found in molecular structure %READC-ERR: atom 79 VAL 3HG1 not found in molecular structure %READC-ERR: atom 79 VAL 1HG2 not found in molecular structure %READC-ERR: atom 79 VAL 2HG2 not found in molecular structure %READC-ERR: atom 79 VAL 3HG2 not found in molecular structure %READC-ERR: atom 80 THR H not found in molecular structure %READC-ERR: atom 80 THR 1HG2 not found in molecular structure %READC-ERR: atom 80 THR 2HG2 not found in molecular structure %READC-ERR: atom 80 THR 3HG2 not found in molecular structure %READC-ERR: atom 81 SER H not found in molecular structure %READC-ERR: atom 81 SER 2HB not found in molecular structure %READC-ERR: atom 81 SER 3HB not found in molecular structure %READC-ERR: atom 82 ASP H not found in molecular structure %READC-ERR: atom 82 ASP 2HB not found in molecular structure %READC-ERR: atom 82 ASP 3HB not found in molecular structure %READC-ERR: atom 83 GLU H not found in molecular structure %READC-ERR: atom 83 GLU 2HB not found in molecular structure %READC-ERR: atom 83 GLU 3HB not found in molecular structure %READC-ERR: atom 83 GLU 2HG not found in molecular structure %READC-ERR: atom 83 GLU 3HG not found in molecular structure %READC-ERR: atom 84 LEU H not found in molecular structure %READC-ERR: atom 84 LEU 2HB not found in molecular structure %READC-ERR: atom 84 LEU 3HB not found in molecular structure %READC-ERR: atom 84 LEU 1HD1 not found in molecular structure %READC-ERR: atom 84 LEU 2HD1 not found in molecular structure %READC-ERR: atom 84 LEU 3HD1 not found in molecular structure %READC-ERR: atom 84 LEU 1HD2 not found in molecular structure %READC-ERR: atom 84 LEU 2HD2 not found in molecular structure %READC-ERR: atom 84 LEU 3HD2 not found in molecular structure %READC-ERR: atom 85 GLU H not found in molecular structure %READC-ERR: atom 85 GLU 2HB not found in molecular structure %READC-ERR: atom 85 GLU 3HB not found in molecular structure %READC-ERR: atom 85 GLU 2HG not found in molecular structure %READC-ERR: atom 85 GLU 3HG not found in molecular structure %READC-ERR: atom 86 ASN H not found in molecular structure %READC-ERR: atom 86 ASN 2HB not found in molecular structure %READC-ERR: atom 86 ASN 3HB not found in molecular structure %READC-ERR: atom 86 ASN 1HD2 not found in molecular structure %READC-ERR: atom 86 ASN 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU H not found in molecular structure %READC-ERR: atom 87 LEU 2HB not found in molecular structure %READC-ERR: atom 87 LEU 3HB not found in molecular structure %READC-ERR: atom 87 LEU 1HD1 not found in molecular structure %READC-ERR: atom 87 LEU 2HD1 not found in molecular structure %READC-ERR: atom 87 LEU 3HD1 not found in molecular structure %READC-ERR: atom 87 LEU 1HD2 not found in molecular structure %READC-ERR: atom 87 LEU 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU 3HD2 not found in molecular structure %READC-ERR: atom 88 ASP H not found in molecular structure %READC-ERR: atom 88 ASP 2HB not found in molecular structure %READC-ERR: atom 88 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ALA H not found in molecular structure %READC-ERR: atom 89 ALA 1HB not found in molecular structure %READC-ERR: atom 89 ALA 2HB not found in molecular structure %READC-ERR: atom 89 ALA 3HB not found in molecular structure %READC-ERR: atom 90 VAL H not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 91 GLU H not found in molecular structure %READC-ERR: atom 91 GLU 2HB not found in molecular structure %READC-ERR: atom 91 GLU 3HB not found in molecular structure %READC-ERR: atom 91 GLU 2HG not found in molecular structure %READC-ERR: atom 91 GLU 3HG not found in molecular structure %READC-ERR: atom 92 GLY H not found in molecular structure %READC-ERR: atom 92 GLY 2HA not found in molecular structure %READC-ERR: atom 92 GLY 3HA not found in molecular structure %READC-ERR: atom 93 ASN H not found in molecular structure %READC-ERR: atom 93 ASN 2HB not found in molecular structure %READC-ERR: atom 93 ASN 3HB not found in molecular structure %READC-ERR: atom 93 ASN 1HD2 not found in molecular structure %READC-ERR: atom 93 ASN 2HD2 not found in molecular structure %READC-ERR: atom 94 GLU H not found in molecular structure %READC-ERR: atom 94 GLU 2HB not found in molecular structure %READC-ERR: atom 94 GLU 3HB not found in molecular structure %READC-ERR: atom 94 GLU 2HG not found in molecular structure %READC-ERR: atom 94 GLU 3HG not found in molecular structure %READC-ERR: atom 95 TYR H not found in molecular structure %READC-ERR: atom 95 TYR 2HB not found in molecular structure %READC-ERR: atom 95 TYR 3HB not found in molecular structure %READC-ERR: atom 96 GLU H not found in molecular structure %READC-ERR: atom 96 GLU 2HB not found in molecular structure %READC-ERR: atom 96 GLU 3HB not found in molecular structure %READC-ERR: atom 96 GLU 2HG not found in molecular structure %READC-ERR: atom 96 GLU 3HG not found in molecular structure %READC-ERR: atom 97 ARG H not found in molecular structure %READC-ERR: atom 97 ARG 2HB not found in molecular structure %READC-ERR: atom 97 ARG 3HB not found in molecular structure %READC-ERR: atom 97 ARG 2HG not found in molecular structure %READC-ERR: atom 97 ARG 3HG not found in molecular structure %READC-ERR: atom 97 ARG 2HD not found in molecular structure %READC-ERR: atom 97 ARG 3HD not found in molecular structure %READC-ERR: atom 97 ARG 1HH1 not found in molecular structure %READC-ERR: atom 97 ARG 2HH1 not found in molecular structure %READC-ERR: atom 97 ARG 1HH2 not found in molecular structure %READC-ERR: atom 97 ARG 2HH2 not found in molecular structure %READC-ERR: atom 98 VAL H not found in molecular structure %READC-ERR: atom 98 VAL 1HG1 not found in molecular structure %READC-ERR: atom 98 VAL 2HG1 not found in molecular structure %READC-ERR: atom 98 VAL 3HG1 not found in molecular structure %READC-ERR: atom 98 VAL 1HG2 not found in molecular structure %READC-ERR: atom 98 VAL 2HG2 not found in molecular structure %READC-ERR: atom 98 VAL 3HG2 not found in molecular structure %READC-ERR: atom 99 THR H not found in molecular structure %READC-ERR: atom 99 THR 1HG2 not found in molecular structure %READC-ERR: atom 99 THR 2HG2 not found in molecular structure %READC-ERR: atom 99 THR 3HG2 not found in molecular structure %READC-ERR: atom 100 VAL H not found in molecular structure %READC-ERR: atom 100 VAL 1HG1 not found in molecular structure %READC-ERR: atom 100 VAL 2HG1 not found in molecular structure %READC-ERR: atom 100 VAL 3HG1 not found in molecular structure %READC-ERR: atom 100 VAL 1HG2 not found in molecular structure %READC-ERR: atom 100 VAL 2HG2 not found in molecular structure %READC-ERR: atom 100 VAL 3HG2 not found in molecular structure %READC-ERR: atom 101 GLY H not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY 3HA not found in molecular structure %READC-ERR: atom 102 ILE H not found in molecular structure %READC-ERR: atom 102 ILE 1HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG2 not found in molecular structure %READC-ERR: atom 102 ILE 3HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG1 not found in molecular structure %READC-ERR: atom 102 ILE 3HG1 not found in molecular structure %READC-ERR: atom 102 ILE 1HD1 not found in molecular structure %READC-ERR: atom 102 ILE 2HD1 not found in molecular structure %READC-ERR: atom 102 ILE 3HD1 not found in molecular structure %READC-ERR: atom 103 VAL H not found in molecular structure %READC-ERR: atom 103 VAL 1HG1 not found in molecular structure %READC-ERR: atom 103 VAL 2HG1 not found in molecular structure %READC-ERR: atom 103 VAL 3HG1 not found in molecular structure %READC-ERR: atom 103 VAL 1HG2 not found in molecular structure %READC-ERR: atom 103 VAL 2HG2 not found in molecular structure %READC-ERR: atom 103 VAL 3HG2 not found in molecular structure %READC-ERR: atom 104 ARG H not found in molecular structure %READC-ERR: atom 104 ARG 2HB not found in molecular structure %READC-ERR: atom 104 ARG 3HB not found in molecular structure %READC-ERR: atom 104 ARG 2HG not found in molecular structure %READC-ERR: atom 104 ARG 3HG not found in molecular structure %READC-ERR: atom 104 ARG 2HD not found in molecular structure %READC-ERR: atom 104 ARG 3HD not found in molecular structure %READC-ERR: atom 104 ARG 1HH1 not found in molecular structure %READC-ERR: atom 104 ARG 2HH1 not found in molecular structure %READC-ERR: atom 104 ARG 1HH2 not found in molecular structure %READC-ERR: atom 104 ARG 2HH2 not found in molecular structure %READC-ERR: atom 105 GLU H not found in molecular structure %READC-ERR: atom 105 GLU 2HB not found in molecular structure %READC-ERR: atom 105 GLU 3HB not found in molecular structure %READC-ERR: atom 105 GLU 2HG not found in molecular structure %READC-ERR: atom 105 GLU 3HG not found in molecular structure %READC-ERR: atom 106 ASP H not found in molecular structure %READC-ERR: atom 106 ASP 2HB not found in molecular structure %READC-ERR: atom 106 ASP 3HB not found in molecular structure %READC-ERR: atom 107 ASN H not found in molecular structure %READC-ERR: atom 107 ASN 2HB not found in molecular structure %READC-ERR: atom 107 ASN 3HB not found in molecular structure %READC-ERR: atom 107 ASN 1HD2 not found in molecular structure %READC-ERR: atom 107 ASN 2HD2 not found in molecular structure %READC-ERR: atom 108 SER H not found in molecular structure %READC-ERR: atom 108 SER 2HB not found in molecular structure %READC-ERR: atom 108 SER 3HB not found in molecular structure %READC-ERR: atom 109 GLU H not found in molecular structure %READC-ERR: atom 109 GLU 2HB not found in molecular structure %READC-ERR: atom 109 GLU 3HB not found in molecular structure %READC-ERR: atom 109 GLU 2HG not found in molecular structure %READC-ERR: atom 109 GLU 3HG not found in molecular structure %READC-ERR: atom 110 LYS H not found in molecular structure %READC-ERR: atom 110 LYS 2HB not found in molecular structure %READC-ERR: atom 110 LYS 3HB not found in molecular structure %READC-ERR: atom 110 LYS 2HG not found in molecular structure %READC-ERR: atom 110 LYS 3HG not found in molecular structure %READC-ERR: atom 110 LYS 2HD not found in molecular structure %READC-ERR: atom 110 LYS 3HD not found in molecular structure %READC-ERR: atom 110 LYS 2HE not found in molecular structure %READC-ERR: atom 110 LYS 3HE not found in molecular structure %READC-ERR: atom 110 LYS 1HZ not found in molecular structure %READC-ERR: atom 110 LYS 2HZ not found in molecular structure %READC-ERR: atom 110 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 MET H not found in molecular structure %READC-ERR: atom 111 MET 2HB not found in molecular structure %READC-ERR: atom 111 MET 3HB not found in molecular structure %READC-ERR: atom 111 MET 2HG not found in molecular structure %READC-ERR: atom 111 MET 3HG not found in molecular structure %READC-ERR: atom 111 MET 1HE not found in molecular structure %READC-ERR: atom 111 MET 2HE not found in molecular structure %READC-ERR: atom 111 MET 3HE not found in molecular structure %READC-ERR: atom 112 ALA H not found in molecular structure %READC-ERR: atom 112 ALA 1HB not found in molecular structure %READC-ERR: atom 112 ALA 2HB not found in molecular structure %READC-ERR: atom 112 ALA 3HB not found in molecular structure %READC-ERR: atom 113 VAL H not found in molecular structure %READC-ERR: atom 113 VAL 1HG1 not found in molecular structure %READC-ERR: atom 113 VAL 2HG1 not found in molecular structure %READC-ERR: atom 113 VAL 3HG1 not found in molecular structure %READC-ERR: atom 113 VAL 1HG2 not found in molecular structure %READC-ERR: atom 113 VAL 2HG2 not found in molecular structure %READC-ERR: atom 113 VAL 3HG2 not found in molecular structure %READC-ERR: atom 114 LYS H not found in molecular structure %READC-ERR: atom 114 LYS 2HB not found in molecular structure %READC-ERR: atom 114 LYS 3HB not found in molecular structure %READC-ERR: atom 114 LYS 2HG not found in molecular structure %READC-ERR: atom 114 LYS 3HG not found in molecular structure %READC-ERR: atom 114 LYS 2HD not found in molecular structure %READC-ERR: atom 114 LYS 3HD not found in molecular structure %READC-ERR: atom 114 LYS 2HE not found in molecular structure %READC-ERR: atom 114 LYS 3HE not found in molecular structure %READC-ERR: atom 114 LYS 1HZ not found in molecular structure %READC-ERR: atom 114 LYS 2HZ not found in molecular structure %READC-ERR: atom 114 LYS 3HZ not found in molecular structure %READC-ERR: atom 115 THR H not found in molecular structure %READC-ERR: atom 115 THR 1HG2 not found in molecular structure %READC-ERR: atom 115 THR 2HG2 not found in molecular structure %READC-ERR: atom 115 THR 3HG2 not found in molecular structure %READC-ERR: atom 116 TYR H not found in molecular structure %READC-ERR: atom 116 TYR 2HB not found in molecular structure %READC-ERR: atom 116 TYR 3HB not found in molecular structure %READC-ERR: atom 117 MET H not found in molecular structure %READC-ERR: atom 117 MET 2HB not found in molecular structure %READC-ERR: atom 117 MET 3HB not found in molecular structure %READC-ERR: atom 117 MET 2HG not found in molecular structure %READC-ERR: atom 117 MET 3HG not found in molecular structure %READC-ERR: atom 117 MET 1HE not found in molecular structure %READC-ERR: atom 117 MET 2HE not found in molecular structure %READC-ERR: atom 117 MET 3HE not found in molecular structure %READC-ERR: atom 118 TRP H not found in molecular structure %READC-ERR: atom 118 TRP 2HB not found in molecular structure %READC-ERR: atom 118 TRP 3HB not found in molecular structure %READC-ERR: atom 119 ILE H not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ASN H not found in molecular structure %READC-ERR: atom 120 ASN 2HB not found in molecular structure %READC-ERR: atom 120 ASN 3HB not found in molecular structure %READC-ERR: atom 120 ASN 1HD2 not found in molecular structure %READC-ERR: atom 120 ASN 2HD2 not found in molecular structure %READC-ERR: atom 121 LYS H not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 122 ALA H not found in molecular structure %READC-ERR: atom 122 ALA 1HB not found in molecular structure %READC-ERR: atom 122 ALA 2HB not found in molecular structure %READC-ERR: atom 122 ALA 3HB not found in molecular structure %READC-ERR: atom 123 ASP H not found in molecular structure %READC-ERR: atom 123 ASP 2HB not found in molecular structure %READC-ERR: atom 123 ASP 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HB not found in molecular structure %READC-ERR: atom 124 PRO 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HG not found in molecular structure %READC-ERR: atom 124 PRO 3HG not found in molecular structure %READC-ERR: atom 124 PRO 2HD not found in molecular structure %READC-ERR: atom 124 PRO 3HD not found in molecular structure %READC-ERR: atom 125 ASP H not found in molecular structure %READC-ERR: atom 125 ASP 2HB not found in molecular structure %READC-ERR: atom 125 ASP 3HB not found in molecular structure %READC-ERR: atom 126 MET H not found in molecular structure %READC-ERR: atom 126 MET 2HB not found in molecular structure %READC-ERR: atom 126 MET 3HB not found in molecular structure %READC-ERR: atom 126 MET 2HG not found in molecular structure %READC-ERR: atom 126 MET 3HG not found in molecular structure %READC-ERR: atom 126 MET 1HE not found in molecular structure %READC-ERR: atom 126 MET 2HE not found in molecular structure %READC-ERR: atom 126 MET 3HE not found in molecular structure %READC-ERR: atom 127 PHE H not found in molecular structure %READC-ERR: atom 127 PHE 2HB not found in molecular structure %READC-ERR: atom 127 PHE 3HB not found in molecular structure %READC-ERR: atom 128 GLY H not found in molecular structure %READC-ERR: atom 128 GLY 2HA not found in molecular structure %READC-ERR: atom 128 GLY 3HA not found in molecular structure %READC-ERR: atom 129 GLU H not found in molecular structure %READC-ERR: atom 129 GLU 2HB not found in molecular structure %READC-ERR: atom 129 GLU 3HB not found in molecular structure %READC-ERR: atom 129 GLU 2HG not found in molecular structure %READC-ERR: atom 129 GLU 3HG not found in molecular structure %READC-ERR: atom 130 TRP H not found in molecular structure %READC-ERR: atom 130 TRP 2HB not found in molecular structure %READC-ERR: atom 130 TRP 3HB not found in molecular structure %READC-ERR: atom 131 ASN H not found in molecular structure %READC-ERR: atom 131 ASN 2HB not found in molecular structure %READC-ERR: atom 131 ASN 3HB not found in molecular structure %READC-ERR: atom 131 ASN 1HD2 not found in molecular structure %READC-ERR: atom 131 ASN 2HD2 not found in molecular structure %READC-ERR: atom 132 PHE H not found in molecular structure %READC-ERR: atom 132 PHE 2HB not found in molecular structure %READC-ERR: atom 132 PHE 3HB not found in molecular structure %READC-ERR: atom 133 GLU H not found in molecular structure %READC-ERR: atom 133 GLU 2HB not found in molecular structure %READC-ERR: atom 133 GLU 3HB not found in molecular structure %READC-ERR: atom 133 GLU 2HG not found in molecular structure %READC-ERR: atom 133 GLU 3HG not found in molecular structure %READC-ERR: atom 134 GLU H not found in molecular structure %READC-ERR: atom 134 GLU 2HB not found in molecular structure %READC-ERR: atom 134 GLU 3HB not found in molecular structure %READC-ERR: atom 134 GLU 2HG not found in molecular structure %READC-ERR: atom 134 GLU 3HG not found in molecular structure %READC-ERR: atom 135 TRP H not found in molecular structure %READC-ERR: atom 135 TRP 2HB not found in molecular structure %READC-ERR: atom 135 TRP 3HB not found in molecular structure %READC-ERR: atom 136 LYS H not found in molecular structure %READC-ERR: atom 136 LYS 2HB not found in molecular structure %READC-ERR: atom 136 LYS 3HB not found in molecular structure %READC-ERR: atom 136 LYS 2HG not found in molecular structure %READC-ERR: atom 136 LYS 3HG not found in molecular structure %READC-ERR: atom 136 LYS 2HD not found in molecular structure %READC-ERR: atom 136 LYS 3HD not found in molecular structure %READC-ERR: atom 136 LYS 2HE not found in molecular structure %READC-ERR: atom 136 LYS 3HE not found in molecular structure %READC-ERR: atom 136 LYS 1HZ not found in molecular structure %READC-ERR: atom 136 LYS 2HZ not found in molecular structure %READC-ERR: atom 136 LYS 3HZ not found in molecular structure %READC-ERR: atom 137 ARG H not found in molecular structure %READC-ERR: atom 137 ARG 2HB not found in molecular structure %READC-ERR: atom 137 ARG 3HB not found in molecular structure %READC-ERR: atom 137 ARG 2HG not found in molecular structure %READC-ERR: atom 137 ARG 3HG not found in molecular structure %READC-ERR: atom 137 ARG 2HD not found in molecular structure %READC-ERR: atom 137 ARG 3HD not found in molecular structure %READC-ERR: atom 137 ARG 1HH1 not found in molecular structure %READC-ERR: atom 137 ARG 2HH1 not found in molecular structure %READC-ERR: atom 137 ARG 1HH2 not found in molecular structure %READC-ERR: atom 137 ARG 2HH2 not found in molecular structure %READC-ERR: atom 138 LEU H not found in molecular structure %READC-ERR: atom 138 LEU 2HB not found in molecular structure %READC-ERR: atom 138 LEU 3HB not found in molecular structure %READC-ERR: atom 138 LEU 1HD1 not found in molecular structure %READC-ERR: atom 138 LEU 2HD1 not found in molecular structure %READC-ERR: atom 138 LEU 3HD1 not found in molecular structure %READC-ERR: atom 138 LEU 1HD2 not found in molecular structure %READC-ERR: atom 138 LEU 2HD2 not found in molecular structure %READC-ERR: atom 138 LEU 3HD2 not found in molecular structure %READC-ERR: atom 139 HIS H not found in molecular structure %READC-ERR: atom 139 HIS 2HB not found in molecular structure %READC-ERR: atom 139 HIS 3HB not found in molecular structure %READC-ERR: atom 140 LYS H not found in molecular structure %READC-ERR: atom 140 LYS 2HB not found in molecular structure %READC-ERR: atom 140 LYS 3HB not found in molecular structure %READC-ERR: atom 140 LYS 2HG not found in molecular structure %READC-ERR: atom 140 LYS 3HG not found in molecular structure %READC-ERR: atom 140 LYS 2HD not found in molecular structure %READC-ERR: atom 140 LYS 3HD not found in molecular structure %READC-ERR: atom 140 LYS 2HE not found in molecular structure %READC-ERR: atom 140 LYS 3HE not found in molecular structure %READC-ERR: atom 140 LYS 1HZ not found in molecular structure %READC-ERR: atom 140 LYS 2HZ not found in molecular structure %READC-ERR: atom 140 LYS 3HZ not found in molecular structure %READC-ERR: atom 141 LYS H not found in molecular structure %READC-ERR: atom 141 LYS 2HB not found in molecular structure %READC-ERR: atom 141 LYS 3HB not found in molecular structure %READC-ERR: atom 141 LYS 2HG not found in molecular structure %READC-ERR: atom 141 LYS 3HG not found in molecular structure %READC-ERR: atom 141 LYS 2HD not found in molecular structure %READC-ERR: atom 141 LYS 3HD not found in molecular structure %READC-ERR: atom 141 LYS 2HE not found in molecular structure %READC-ERR: atom 141 LYS 3HE not found in molecular structure %READC-ERR: atom 141 LYS 1HZ not found in molecular structure %READC-ERR: atom 141 LYS 2HZ not found in molecular structure %READC-ERR: atom 141 LYS 3HZ not found in molecular structure %READC-ERR: atom 142 LYS H not found in molecular structure %READC-ERR: atom 142 LYS 2HB not found in molecular structure %READC-ERR: atom 142 LYS 3HB not found in molecular structure %READC-ERR: atom 142 LYS 2HG not found in molecular structure %READC-ERR: atom 142 LYS 3HG not found in molecular structure %READC-ERR: atom 142 LYS 2HD not found in molecular structure %READC-ERR: atom 142 LYS 3HD not found in molecular structure %READC-ERR: atom 142 LYS 2HE not found in molecular structure %READC-ERR: atom 142 LYS 3HE not found in molecular structure %READC-ERR: atom 142 LYS 1HZ not found in molecular structure %READC-ERR: atom 142 LYS 2HZ not found in molecular structure %READC-ERR: atom 142 LYS 3HZ not found in molecular structure %READC-ERR: atom 143 PHE H not found in molecular structure %READC-ERR: atom 143 PHE 2HB not found in molecular structure %READC-ERR: atom 143 PHE 3HB not found in molecular structure %READC-ERR: atom 144 ILE H not found in molecular structure %READC-ERR: atom 144 ILE 1HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG2 not found in molecular structure %READC-ERR: atom 144 ILE 3HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG1 not found in molecular structure %READC-ERR: atom 144 ILE 3HG1 not found in molecular structure %READC-ERR: atom 144 ILE 1HD1 not found in molecular structure %READC-ERR: atom 144 ILE 2HD1 not found in molecular structure %READC-ERR: atom 144 ILE 3HD1 not found in molecular structure %READC-ERR: atom 145 GLU H not found in molecular structure %READC-ERR: atom 145 GLU 2HB not found in molecular structure %READC-ERR: atom 145 GLU 3HB not found in molecular structure %READC-ERR: atom 145 GLU 2HG not found in molecular structure %READC-ERR: atom 145 GLU 3HG not found in molecular structure %READC-ERR: atom 146 THR H not found in molecular structure %READC-ERR: atom 146 THR 1HG2 not found in molecular structure %READC-ERR: atom 146 THR 2HG2 not found in molecular structure %READC-ERR: atom 146 THR 3HG2 not found in molecular structure %READC-ERR: atom 147 PHE H not found in molecular structure %READC-ERR: atom 147 PHE 2HB not found in molecular structure %READC-ERR: atom 147 PHE 3HB not found in molecular structure %READC-ERR: atom 148 LYS H not found in molecular structure %READC-ERR: atom 148 LYS 2HB not found in molecular structure %READC-ERR: atom 148 LYS 3HB not found in molecular structure %READC-ERR: atom 148 LYS 2HG not found in molecular structure %READC-ERR: atom 148 LYS 3HG not found in molecular structure %READC-ERR: atom 148 LYS 2HD not found in molecular structure %READC-ERR: atom 148 LYS 3HD not found in molecular structure %READC-ERR: atom 148 LYS 2HE not found in molecular structure %READC-ERR: atom 148 LYS 3HE not found in molecular structure %READC-ERR: atom 148 LYS 1HZ not found in molecular structure %READC-ERR: atom 148 LYS 2HZ not found in molecular structure %READC-ERR: atom 148 LYS 3HZ not found in molecular structure %READC-ERR: atom 149 LYS H not found in molecular structure %READC-ERR: atom 149 LYS 2HB not found in molecular structure %READC-ERR: atom 149 LYS 3HB not found in molecular structure %READC-ERR: atom 149 LYS 2HG not found in molecular structure %READC-ERR: atom 149 LYS 3HG not found in molecular structure %READC-ERR: atom 149 LYS 2HD not found in molecular structure %READC-ERR: atom 149 LYS 3HD not found in molecular structure %READC-ERR: atom 149 LYS 2HE not found in molecular structure %READC-ERR: atom 149 LYS 3HE not found in molecular structure %READC-ERR: atom 149 LYS 1HZ not found in molecular structure %READC-ERR: atom 149 LYS 2HZ not found in molecular structure %READC-ERR: atom 149 LYS 3HZ not found in molecular structure %READC-ERR: atom 150 ILE H not found in molecular structure %READC-ERR: atom 150 ILE 1HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG2 not found in molecular structure %READC-ERR: atom 150 ILE 3HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG1 not found in molecular structure %READC-ERR: atom 150 ILE 3HG1 not found in molecular structure %READC-ERR: atom 150 ILE 1HD1 not found in molecular structure %READC-ERR: atom 150 ILE 2HD1 not found in molecular structure %READC-ERR: atom 150 ILE 3HD1 not found in molecular structure %READC-ERR: atom 151 MET H not found in molecular structure %READC-ERR: atom 151 MET 2HB not found in molecular structure %READC-ERR: atom 151 MET 3HB not found in molecular structure %READC-ERR: atom 151 MET 2HG not found in molecular structure %READC-ERR: atom 151 MET 3HG not found in molecular structure %READC-ERR: atom 151 MET 1HE not found in molecular structure %READC-ERR: atom 151 MET 2HE not found in molecular structure %READC-ERR: atom 151 MET 3HE not found in molecular structure %READC-ERR: atom 152 GLU H not found in molecular structure %READC-ERR: atom 152 GLU 2HB not found in molecular structure %READC-ERR: atom 152 GLU 3HB not found in molecular structure %READC-ERR: atom 152 GLU 2HG not found in molecular structure %READC-ERR: atom 152 GLU 3HG not found in molecular structure %READC-ERR: atom 153 CYS H not found in molecular structure %READC-ERR: atom 153 CYS 2HB not found in molecular structure %READC-ERR: atom 153 CYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS H not found in molecular structure %READC-ERR: atom 154 LYS 2HB not found in molecular structure %READC-ERR: atom 154 LYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS 2HG not found in molecular structure %READC-ERR: atom 154 LYS 3HG not found in molecular structure %READC-ERR: atom 154 LYS 2HD not found in molecular structure %READC-ERR: atom 154 LYS 3HD not found in molecular structure %READC-ERR: atom 154 LYS 2HE not found in molecular structure %READC-ERR: atom 154 LYS 3HE not found in molecular structure %READC-ERR: atom 154 LYS 1HZ not found in molecular structure %READC-ERR: atom 154 LYS 2HZ not found in molecular structure %READC-ERR: atom 154 LYS 3HZ not found in molecular structure %READC-ERR: atom 155 LYS H not found in molecular structure %READC-ERR: atom 155 LYS 2HB not found in molecular structure %READC-ERR: atom 155 LYS 3HB not found in molecular structure %READC-ERR: atom 155 LYS 2HG not found in molecular structure %READC-ERR: atom 155 LYS 3HG not found in molecular structure %READC-ERR: atom 155 LYS 2HD not found in molecular structure %READC-ERR: atom 155 LYS 3HD not found in molecular structure %READC-ERR: atom 155 LYS 2HE not found in molecular structure %READC-ERR: atom 155 LYS 3HE not found in molecular structure %READC-ERR: atom 155 LYS 1HZ not found in molecular structure %READC-ERR: atom 155 LYS 2HZ not found in molecular structure %READC-ERR: atom 155 LYS 3HZ not found in molecular structure %READC-ERR: atom 156 LYS H not found in molecular structure %READC-ERR: atom 156 LYS 2HB not found in molecular structure %READC-ERR: atom 156 LYS 3HB not found in molecular structure %READC-ERR: atom 156 LYS 2HG not found in molecular structure %READC-ERR: atom 156 LYS 3HG not found in molecular structure %READC-ERR: atom 156 LYS 2HD not found in molecular structure %READC-ERR: atom 156 LYS 3HD not found in molecular structure %READC-ERR: atom 156 LYS 2HE not found in molecular structure %READC-ERR: atom 156 LYS 3HE not found in molecular structure %READC-ERR: atom 156 LYS 1HZ not found in molecular structure %READC-ERR: atom 156 LYS 2HZ not found in molecular structure %READC-ERR: atom 156 LYS 3HZ not found in molecular structure %READC-ERR: atom 157 PRO 2HB not found in molecular structure %READC-ERR: atom 157 PRO 3HB not found in molecular structure %READC-ERR: atom 157 PRO 2HG not found in molecular structure %READC-ERR: atom 157 PRO 3HG not found in molecular structure %READC-ERR: atom 157 PRO 2HD not found in molecular structure %READC-ERR: atom 157 PRO 3HD not found in molecular structure %READC-ERR: atom 158 GLN H not found in molecular structure %READC-ERR: atom 158 GLN 2HB not found in molecular structure %READC-ERR: atom 158 GLN 3HB not found in molecular structure %READC-ERR: atom 158 GLN 2HG not found in molecular structure %READC-ERR: atom 158 GLN 3HG not found in molecular structure %READC-ERR: atom 158 GLN 1HE2 not found in molecular structure %READC-ERR: atom 158 GLN 2HE2 not found in molecular structure %READC-ERR: atom 159 GLY H not found in molecular structure %READC-ERR: atom 159 GLY 2HA not found in molecular structure %READC-ERR: atom 159 GLY 3HA not found in molecular structure %READC-ERR: atom 160 GLN H not found in molecular structure %READC-ERR: atom 160 GLN 2HB not found in molecular structure %READC-ERR: atom 160 GLN 3HB not found in molecular structure %READC-ERR: atom 160 GLN 2HG not found in molecular structure %READC-ERR: atom 160 GLN 3HG not found in molecular structure %READC-ERR: atom 160 GLN 1HE2 not found in molecular structure %READC-ERR: atom 160 GLN 2HE2 not found in molecular structure %READC-ERR: atom 161 GLY H not found in molecular structure %READC-ERR: atom 161 GLY 2HA not found in molecular structure %READC-ERR: atom 161 GLY 3HA not found in molecular structure %READC-ERR: atom 162 ASN H not found in molecular structure %READC-ERR: atom 162 ASN 2HB not found in molecular structure %READC-ERR: atom 162 ASN 3HB not found in molecular structure %READC-ERR: atom 162 ASN 1HD2 not found in molecular structure %READC-ERR: atom 162 ASN 2HD2 not found in molecular structure %READC-ERR: atom 163 ASP H not found in molecular structure %READC-ERR: atom 163 ASP 2HB not found in molecular structure %READC-ERR: atom 163 ASP 3HB not found in molecular structure %READC-ERR: atom 164 ASP H not found in molecular structure %READC-ERR: atom 164 ASP 2HB not found in molecular structure %READC-ERR: atom 164 ASP 3HB not found in molecular structure %READC-ERR: atom 165 ILE H not found in molecular structure %READC-ERR: atom 165 ILE 1HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG2 not found in molecular structure %READC-ERR: atom 165 ILE 3HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG1 not found in molecular structure %READC-ERR: atom 165 ILE 3HG1 not found in molecular structure %READC-ERR: atom 165 ILE 1HD1 not found in molecular structure %READC-ERR: atom 165 ILE 2HD1 not found in molecular structure %READC-ERR: atom 165 ILE 3HD1 not found in molecular structure %READC-ERR: atom 166 SER H not found in molecular structure %READC-ERR: atom 166 SER 2HB not found in molecular structure %READC-ERR: atom 166 SER 3HB not found in molecular structure %READC-ERR: atom 167 HIS H not found in molecular structure %READC-ERR: atom 167 HIS 2HB not found in molecular structure %READC-ERR: atom 167 HIS 3HB not found in molecular structure %READC-ERR: atom 168 VAL H not found in molecular structure %READC-ERR: atom 168 VAL 1HG1 not found in molecular structure %READC-ERR: atom 168 VAL 2HG1 not found in molecular structure %READC-ERR: atom 168 VAL 3HG1 not found in molecular structure %READC-ERR: atom 168 VAL 1HG2 not found in molecular structure %READC-ERR: atom 168 VAL 2HG2 not found in molecular structure %READC-ERR: atom 168 VAL 3HG2 not found in molecular structure %READC-ERR: atom 169 LEU H not found in molecular structure %READC-ERR: atom 169 LEU 2HB not found in molecular structure %READC-ERR: atom 169 LEU 3HB not found in molecular structure %READC-ERR: atom 169 LEU 1HD1 not found in molecular structure %READC-ERR: atom 169 LEU 2HD1 not found in molecular structure %READC-ERR: atom 169 LEU 3HD1 not found in molecular structure %READC-ERR: atom 169 LEU 1HD2 not found in molecular structure %READC-ERR: atom 169 LEU 2HD2 not found in molecular structure %READC-ERR: atom 169 LEU 3HD2 not found in molecular structure %READC-ERR: atom 170 ARG H not found in molecular structure %READC-ERR: atom 170 ARG 2HB not found in molecular structure %READC-ERR: atom 170 ARG 3HB not found in molecular structure %READC-ERR: atom 170 ARG 2HG not found in molecular structure %READC-ERR: atom 170 ARG 3HG not found in molecular structure %READC-ERR: atom 170 ARG 2HD not found in molecular structure %READC-ERR: atom 170 ARG 3HD not found in molecular structure %READC-ERR: atom 170 ARG 1HH1 not found in molecular structure %READC-ERR: atom 170 ARG 2HH1 not found in molecular structure %READC-ERR: atom 170 ARG 1HH2 not found in molecular structure %READC-ERR: atom 170 ARG 2HH2 not found in molecular structure %READC-ERR: atom 171 GLU H not found in molecular structure %READC-ERR: atom 171 GLU 2HB not found in molecular structure %READC-ERR: atom 171 GLU 3HB not found in molecular structure %READC-ERR: atom 171 GLU 2HG not found in molecular structure %READC-ERR: atom 171 GLU 3HG not found in molecular structure %READC-ERR: atom 172 ASP H not found in molecular structure %READC-ERR: atom 172 ASP 2HB not found in molecular structure %READC-ERR: atom 172 ASP 3HB not found in molecular structure %READC-ERR: atom 173 GLN H not found in molecular structure %READC-ERR: atom 173 GLN 2HB not found in molecular structure %READC-ERR: atom 173 GLN 3HB not found in molecular structure %READC-ERR: atom 173 GLN 2HG not found in molecular structure %READC-ERR: atom 173 GLN 3HG not found in molecular structure %READC-ERR: atom 173 GLN 1HE2 not found in molecular structure %READC-ERR: atom 173 GLN 2HE2 not found in molecular structure %READC-ERR: atom 173 GLN O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 1383.00 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 1411 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 1383.00 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 173 atoms have been selected out of 2794 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 40.360250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.3602 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 8.386500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.38650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -76.407500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -76.4075 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 10.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 39.581214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.5812 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 10.695357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.6954 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -73.737786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -73.7378 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 36.695500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.6955 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 4.945786 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.94579 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -70.756643 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -70.7566 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 46.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 38.888000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.8880 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 8.558214 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.55821 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -65.512357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -65.5124 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 64.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 38.363714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.3637 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 3.411857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.41186 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -65.084000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -65.0840 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 82.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 35.674214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.6742 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 4.652071 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.65207 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -59.899643 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -59.8996 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 100.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 39.485571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.4856 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 0.907357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.907357 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -58.069071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -58.0691 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 118.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 35.683000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.6830 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.091900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.09190 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -54.227000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -54.2270 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 137.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 38.129800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.1298 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.662900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.66290 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -51.577800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -51.5778 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 152.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 34.322875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.3229 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -2.946625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.94663 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -49.170500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -49.1705 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 163.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 35.932000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.9320 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.014750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.01475 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -45.545375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -45.5454 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 174.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 32.360875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 32.3609 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -6.628125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.62813 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -43.087625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -43.0876 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 185.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 35.934778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.9348 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.805111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.80511 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -40.294222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -40.2942 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 197.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 34.027500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 34.0275 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -10.092750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0928 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -37.129750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -37.1298 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 208.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 35.422600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 35.4226 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.799700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.79970 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -33.942800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -33.9428 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 36.560400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.5604 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.979500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.9795 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -32.442000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.4420 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.930100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.9301 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.447300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.44730 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -31.053800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.0538 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 263.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 39.100786 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.1008 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -10.050000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.0500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -26.399857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.3999 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 281.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 42.475111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.4751 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.760000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.76000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -24.910556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.9106 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 295.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.382778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.3828 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.749889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.74989 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.657000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.6570 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 311.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 48.570941 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.5709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -3.276412 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.27641 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -18.199412 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.1994 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 331.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.961889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.9619 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.994889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.99489 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.326667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.3267 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 347.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 53.307556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.3076 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -7.828556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.82856 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -14.124000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1240 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 368.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 55.842250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.8423 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -7.788750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.78875 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.530250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.5303 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 375.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 54.948375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.9484 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -11.500750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.5008 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.880375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.8804 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 386.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 53.045353 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.0454 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -13.034059 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.0341 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -19.757941 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.7579 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 406.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 55.882200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.8822 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.522900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.52290 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.052300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.0523 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 423.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 58.250778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.2508 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.310333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.31033 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -24.352556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.3526 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 435.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 56.696875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.6969 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.826125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.82612 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -27.539375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.5394 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 449.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 60.390667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.3907 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -12.486667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4867 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.820556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.8206 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 461.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 58.143222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.1432 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.508889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.5089 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -24.210778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.2108 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 477.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.197300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.1973 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.138000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1380 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -26.416100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.4161 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 496.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 56.191444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.1914 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.587556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.5876 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -30.415889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.4159 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 510.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 57.669556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.6696 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.116778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1168 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.197333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.1973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 526.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 52.951333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.9513 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.158000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1580 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -25.192889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.1929 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 543.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.840900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.8409 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.281700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.2817 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -28.996400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.9964 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 562.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 53.994000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.9940 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.566333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.5663 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -32.853778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.8538 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 574.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 51.410308 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.4103 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -14.037692 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0377 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -34.742615 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -34.7426 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 598.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.149600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.1496 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.070000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.0700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -31.007300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.0073 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 612.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 49.833750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.8338 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.913500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.91350 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -30.394000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.3940 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 50.040800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.0408 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.316500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.31650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -32.594100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.5941 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 641.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.085200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.0852 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.600700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.60070 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -28.051800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.0518 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 660.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.185778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.1858 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.373111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.373111 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.246000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.2460 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 676.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 52.507875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.5079 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 1.827125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.82713 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -24.738500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.7385 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 49.529333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.5293 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 2.097833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.09783 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -21.639667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.6397 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 697.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.102600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.1026 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 4.115100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.11510 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.175700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.1757 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 711.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.226200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.2262 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.846300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.846300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.986600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.9866 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 730.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 45.140625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.1406 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 4.362000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.36200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -13.775000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.7750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 744.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 44.710000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.7100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 2.682750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.68275 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -9.686500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.68650 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 751.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 44.930412 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.9304 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -0.639294 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.639294 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -10.265412 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.2654 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 771.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.196500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.1965 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.012400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.01240 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.679200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.67920 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 788.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 54.493385 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.4934 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -1.386154 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.38615 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -10.691615 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.6916 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 812.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 53.145176 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.1452 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -3.489059 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.48906 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -4.258000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.25800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 832.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 60.826462 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.8265 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -5.466385 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.46638 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -6.018462 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.01846 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 856.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 60.420800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.4208 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.469900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.46990 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.006200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.00620 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 875.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 62.490300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 62.4903 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.897500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.89750 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.431200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.431200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 897.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 61.371750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.3718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -12.979250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.9793 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -0.575750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.575750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 904.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 56.813231 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.8132 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -14.459769 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.4598 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 0.935769 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.935769 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 928.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.919300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.9193 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.410900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4109 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.241700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.24170 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 947.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 56.136889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.1369 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -14.933833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.9338 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -6.810722 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.81072 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 55.833250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.8332 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.060750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.06075 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -8.501500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.50150 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 982.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 51.704875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.7049 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.958375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.95837 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.956000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.95600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 993.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.244600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.2446 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.205500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.20550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.047700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0477 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1012.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 47.208333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.2083 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.859889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.85989 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.186556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.18656 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 44.227250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.2273 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -1.621625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.62163 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -6.163000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.16300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 46.242625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.2426 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 2.400500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.40050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -4.890500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.89050 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1053.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.530500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.5305 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.340400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.34040 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.371400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.37140 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1068.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.330500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.3305 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.742100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.74210 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.392500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.39250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1090.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 48.010500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.0105 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 4.958250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.95825 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -8.284500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.28450 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1097.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 50.300500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.3005 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.473400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.47340 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.497300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4973 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1112.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.632778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.6328 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 0.820667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.820667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.441889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.4419 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1128.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 53.164214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.1642 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 3.864500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.86450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -16.454714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.4547 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1146.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 52.993750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.9938 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -0.506500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.506500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -19.495000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.4950 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1153.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.471400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.4714 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.214700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.21470 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.651600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.6516 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1175.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.458778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.4588 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.186667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.18667 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -23.841111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.8411 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1191.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.092800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.0928 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.396200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.39620 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.448000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.4480 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1210.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.645889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.6459 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.097889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.09789 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -28.759667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.7597 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1227.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 44.367000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.3670 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -9.138750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.13875 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -30.559500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.5595 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1234.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.663889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.6639 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.531889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.5319 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -28.005222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.0052 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.875000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.8750 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.880900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.8809 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -30.326500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.3265 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1264.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 38.220375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.2204 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.178000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.1780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -27.511375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.5114 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1275.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 41.040222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.0402 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.459333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.4593 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -28.015556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.0156 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1287.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.304800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.3048 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.346400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3464 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -27.293800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.2938 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1302.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.342300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.3423 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.042500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0425 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.600700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.6007 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1321.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 39.731800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.7318 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.456000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.4560 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.361100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.3611 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1336.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.476778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.4768 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.168556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1686 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -22.300556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.3006 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1350.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.475600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.4756 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.210200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.2102 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.576200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.5762 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 42.848333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.8483 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.693222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.6932 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.338556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.3386 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1381.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 44.676000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.6760 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -19.272833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.2728 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -17.051000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.0510 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1391.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 48.645889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.6459 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.622667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.6227 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.428000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.4280 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1407.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.933700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.9337 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.091900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.0919 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.592600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.5926 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 45.111250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.1113 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.588500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.5885 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -12.708000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.7080 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1429.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 47.227889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.2279 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.480667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.4807 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.547333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.5473 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1443.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 48.483200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.4832 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -17.149500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.1495 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.834900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.83490 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 48.170889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.1709 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -13.089389 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.0894 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -10.433722 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4337 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1479.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 40.841900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.8419 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.413000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.4130 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.593200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.5932 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 39.326692 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.3267 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -12.035077 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.0351 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -16.079154 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.0792 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1518.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.315222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.3152 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.587222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.58722 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.550778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.5508 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1534.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.042300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.0423 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.819300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.81930 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.090200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.0902 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1548.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 40.602889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.6029 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.944444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.94444 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.813000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.8130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 41.545500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.5455 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 1.245750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.24575 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.350250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.3503 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1571.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 44.291500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.2915 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.977300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.97730 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -20.037300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.0373 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1590.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.779444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.7794 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 6.032222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.03222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.737111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.7371 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1606.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 47.282615 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.2826 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 5.430615 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.43062 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -26.626615 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.6266 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1630.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 52.426200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 52.4262 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.854900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.85490 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.816900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.8169 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1645.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 51.464111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.4641 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 8.611889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.61189 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.550000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.5500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1657.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 47.923111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.9231 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.247333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.2473 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -26.531333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.5313 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1671.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 45.117500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.1175 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 11.608625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.6086 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -22.616375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.6164 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1682.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.410000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.4100 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.644500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.64450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -26.274000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.2740 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 40.024900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.0249 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.491300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.49130 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.002700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.0027 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1719.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 41.533667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.5337 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.104667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.10467 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -24.479889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.4799 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1736.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 39.308333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 39.3083 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -0.637000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.637000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -22.447333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.4473 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1746.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 41.758889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.7589 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.470778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.47078 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.460111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.4601 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1762.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 40.474100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.4741 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.156900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.15690 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.702800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.7028 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1784.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 44.309700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.3097 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.430700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.43070 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.896800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.8968 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1798.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 45.208333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.2083 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -10.808222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.8082 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -15.714500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.7145 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1819.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 44.098778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 44.0988 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.903000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.90300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.572000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.57200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1836.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 47.799619 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 47.7996 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -11.335762 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.3358 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -5.196810 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.19681 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1860.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 42.731000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 42.7310 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.648800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.6488 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.398100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.39810 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1879.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 45.140333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.1403 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.443667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.4437 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.935556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.935556 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1893.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.549000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.5490 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.870000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.87000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.875300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.87530 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1915.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 45.857667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.8577 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -8.047167 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.04717 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 2.612000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.61200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1925.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 49.395778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.3958 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.333556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.3336 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.473778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.47378 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1937.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 51.294625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.2946 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.401375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.40138 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 4.902375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.90238 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1951.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 54.976111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.9761 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.103778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.1038 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 3.648444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.64844 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1963.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 53.649778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.6498 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.975222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.97522 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.643111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.643111 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1980.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 58.156647 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 58.1566 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -5.675647 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.67565 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 2.142529 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.14253 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2000.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 57.841000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.8410 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -3.190500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.19050 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -2.851500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.85150 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 59.335700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.3357 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.161100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.161100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.772100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.77210 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2022.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 61.034000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.0340 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -1.024667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.02467 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -10.450381 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.4504 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2046.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 64.416444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 64.4164 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.898111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.89811 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.314111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.31411 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2060.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 63.266706 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 63.2667 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 2.967529 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.96753 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -13.076294 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.0763 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2080.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 57.472300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.4723 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.508900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.50890 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.104000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.10400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2095.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 61.320100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 61.3201 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.491500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.49150 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.566400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.56640 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2110.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 60.867000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 60.8670 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 11.299238 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.2992 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -12.429905 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4299 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2134.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 55.905700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 55.9057 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.263500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.26350 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.584800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.5848 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2156.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 57.401462 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.4015 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 10.529385 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.5294 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -5.336769 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.33677 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2180.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 59.447800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 59.4478 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.091000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.0910 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.134300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.13430 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2199.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 56.052500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.0525 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 13.669357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.6694 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -13.894857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.8949 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2217.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.815400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.8154 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.523100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.5231 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.034600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0346 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2239.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.438900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.4389 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 16.227200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.2272 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.570200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.57020 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2261.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.769000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.7690 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 19.031500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.0315 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.554400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5544 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2283.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 48.054882 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 48.0549 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 17.456647 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.4566 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -13.242000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.2420 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2303.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 49.432400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 49.4324 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 16.668000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.6680 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.296400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.29640 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2322.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 51.662400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 51.6624 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 21.303100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.3031 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.054100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.05410 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2337.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.929400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.9294 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 22.395600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 22.3956 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.565000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.56500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2351.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 43.985000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.9850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 17.227588 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.2276 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -8.947471 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.94747 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2371.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 46.659800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.6598 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 19.280700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 19.2807 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.187900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.18790 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2393.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.757600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.7576 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 24.701100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 24.7011 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.570300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.57030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2415.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.175900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.1759 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 20.654100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 20.6541 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.363500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.36350 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2434.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 40.878000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.8780 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.037889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.0379 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.523444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.52344 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2451.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 41.247000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 41.2470 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 21.821700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.8217 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.537900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.537900 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2466.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 36.202625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.2026 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 21.691125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 21.6911 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -2.876000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.87600 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2477.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 36.061800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 36.0618 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 17.349800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.3498 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.716300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.71630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2499.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.357600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 37.3576 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 17.539300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 17.5393 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.617700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.61770 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2521.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 38.770700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 38.7707 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.313600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.3136 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.712800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.712800 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 40.604875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 40.6049 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 13.129500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.1295 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 4.333250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.33325 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2557.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 43.722900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.7229 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.995300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.99530 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.091000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.09100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2574.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 43.758250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 43.7583 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 7.908000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.90800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 8.426250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 8.42625 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2581.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 45.292800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 45.2928 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.221000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.22100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.733700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.7337 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2598.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 46.888000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 46.8880 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 2.258250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.25825 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 10.468250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.4683 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2605.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.159222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.1592 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 0.552333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.552333 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 11.538000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.5380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2619.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 50.311444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 50.3114 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 0.074778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.747778E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 15.528889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 15.5289 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2631.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 53.777111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.7771 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 0.010667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.106667E-01 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.516778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 17.5168 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2643.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 53.409000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.4090 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.926600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.92660 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 19.915200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 19.9152 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2662.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 53.638000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 53.6380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -4.704500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.70450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 24.161500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 24.1615 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2673.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 57.037357 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.0374 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -6.358357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.35836 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 26.158214 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 26.1582 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2691.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 54.251222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.2512 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.467889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.46789 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 28.949556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 28.9496 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2707.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 56.099000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 56.0990 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.070200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.0702 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 32.426700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 32.4267 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2726.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 54.357154 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.3572 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -16.986308 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.9863 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 33.181923 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 33.1819 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2750.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 54.214300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.2143 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.229300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.2293 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 37.687200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 37.6872 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2765.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 57.150444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 57.1504 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -18.716778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.7168 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 39.674889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 39.6749 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2777.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 54.838000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 54.8380 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.711222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.7112 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 43.978667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 43.9787 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 1383 atoms have been selected out of 2794 SELRPN: 2794 atoms have been selected out of 2794 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 1383 exclusions and 0 interactions(1-4) %atoms " -7 -HIS -HN " and " -7 -HIS -HB1 " only 0.09 A apart %atoms " -31 -VAL -HN " and " -31 -VAL -HG23" only 0.08 A apart %atoms " -34 -VAL -HA " and " -34 -VAL -CB " only 0.06 A apart %atoms " -54 -ARG -HA " and " -54 -ARG -HH22" only 0.07 A apart %atoms " -59 -LEU -HN " and " -59 -LEU -HB2 " only 0.03 A apart %atoms " -62 -CYS -HN " and " -62 -CYS -HB1 " only 0.07 A apart %atoms " -68 -LYS -HN " and " -68 -LYS -HZ2 " only 0.06 A apart %atoms " -74 -LYS -HE1 " and " -74 -LYS -HZ3 " only 0.10 A apart %atoms " -107 -ASN -CA " and " -107 -ASN -HB1 " only 0.04 A apart %atoms " -136 -LYS -HB2 " and " -136 -LYS -HD1 " only 0.06 A apart %atoms " -143 -PHE -HE1 " and " -143 -PHE -HZ " only 0.05 A apart %atoms " -144 -ILE -HB " and " -144 -ILE -HG22" only 0.07 A apart %atoms " -148 -LYS -HE1 " and " -148 -LYS -HE2 " only 0.07 A apart %atoms " -159 -GLY -HN " and " -159 -GLY -HA2 " only 0.05 A apart %atoms " -168 -VAL -HG11" and " -168 -VAL -HG23" only 0.03 A apart NBONDS: found 159050 intra-atom interactions NBONDS: found 15 nonbonded violations %atoms " -67 -GLU -HA " and " -67 -GLU -HG2 " only 0.06 A apart %atoms " -87 -LEU -HG " and " -87 -LEU -HD11" only 0.08 A apart %atoms " -100 -VAL -HN " and " -100 -VAL -HG21" only 0.09 A apart %atoms " -118 -TRP -CD2 " and " -118 -TRP -HZ3 " only 0.06 A apart %atoms " -121 -LYS -HN " and " -121 -LYS -HE2 " only 0.08 A apart NBONDS: found 158442 intra-atom interactions NBONDS: found 5 nonbonded violations NBONDS: found 146266 intra-atom interactions NBONDS: found 150482 intra-atom interactions NBONDS: found 145796 intra-atom interactions NBONDS: found 147657 intra-atom interactions NBONDS: found 148223 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0004 ----------------------- | Etotal =733918.534 grad(E)=562.117 E(BOND)=106312.925 E(ANGL)=352861.083 | | E(VDW )=274744.525 | ------------------------------------------------------------------------------- NBONDS: found 149137 intra-atom interactions NBONDS: found 149350 intra-atom interactions NBONDS: found 149458 intra-atom interactions NBONDS: found 149840 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0006 ----------------------- | Etotal =257043.304 grad(E)=348.653 E(BOND)=50924.976 E(ANGL)=87703.055 | | E(VDW )=118415.273 | ------------------------------------------------------------------------------- NBONDS: found 149954 intra-atom interactions NBONDS: found 149877 intra-atom interactions NBONDS: found 149870 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0007 ----------------------- | Etotal =216158.411 grad(E)=316.490 E(BOND)=35319.712 E(ANGL)=66101.373 | | E(VDW )=114737.327 | ------------------------------------------------------------------------------- NBONDS: found 149901 intra-atom interactions NBONDS: found 149882 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0005 ----------------------- | Etotal =210129.813 grad(E)=311.970 E(BOND)=34604.926 E(ANGL)=63046.179 | | E(VDW )=112478.708 | ------------------------------------------------------------------------------- NBONDS: found 149900 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0006 ----------------------- | Etotal =209454.274 grad(E)=312.242 E(BOND)=35562.892 E(ANGL)=62760.150 | | E(VDW )=111131.232 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=908257.670 E(kin)=1260.215 temperature=305.697 | | Etotal =906997.455 grad(E)=591.203 E(BOND)=35562.892 E(ANGL)=62760.150 | | E(IMPR)=808674.413 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=586429.011 E(kin)=94103.482 temperature=22827.200 | | Etotal =492325.530 grad(E)=349.266 E(BOND)=60329.209 E(ANGL)=189624.531 | | E(IMPR)=242371.789 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.29284 -1.94188 -14.41569 velocity [A/ps] : -0.30766 0.44303 0.80112 ang. mom. [amu A/ps] :-197750.61731 242247.12053-220767.39087 kin. ener. [Kcal/mol] : 30.83082 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: found 148528 intra-atom interactions NBONDS: found 148473 intra-atom interactions NBONDS: found 148868 intra-atom interactions NBONDS: found 149281 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =487469.347 grad(E)=350.131 E(BOND)=49068.904 E(ANGL)=118947.022 | | E(IMPR)=242421.312 E(VDW )=77032.109 | ------------------------------------------------------------------------------- NBONDS: found 149411 intra-atom interactions NBONDS: found 149372 intra-atom interactions NBONDS: found 149234 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =307053.408 grad(E)=266.936 E(BOND)=36607.033 E(ANGL)=59019.734 | | E(IMPR)=134183.607 E(VDW )=77243.034 | ------------------------------------------------------------------------------- NBONDS: found 149367 intra-atom interactions NBONDS: found 149385 intra-atom interactions NBONDS: found 149387 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0001 ----------------------- | Etotal =242428.142 grad(E)=257.282 E(BOND)=32252.414 E(ANGL)=41370.470 | | E(IMPR)=95647.408 E(VDW )=73157.849 | ------------------------------------------------------------------------------- NBONDS: found 149378 intra-atom interactions NBONDS: found 149339 intra-atom interactions NBONDS: found 149380 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0001 ----------------------- | Etotal =200522.784 grad(E)=250.319 E(BOND)=31760.803 E(ANGL)=30240.260 | | E(IMPR)=69849.541 E(VDW )=68672.179 | ------------------------------------------------------------------------------- NBONDS: found 149359 intra-atom interactions NBONDS: found 149376 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0001 ----------------------- | Etotal =180455.403 grad(E)=248.990 E(BOND)=31051.571 E(ANGL)=24625.506 | | E(IMPR)=57920.882 E(VDW )=66857.445 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=181668.809 E(kin)=1213.406 temperature=294.342 | | Etotal =180455.403 grad(E)=248.990 E(BOND)=31051.571 E(ANGL)=24625.506 | | E(IMPR)=57920.882 E(VDW )=66857.445 | ------------------------------------------------------------------------------- NBONDS: found 149391 intra-atom interactions NBONDS: found 149385 intra-atom interactions NBONDS: found 149426 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=174651.514 E(kin)=4187.618 temperature=1015.813 | | Etotal =170463.896 grad(E)=248.548 E(BOND)=31232.042 E(ANGL)=22380.909 | | E(IMPR)=50735.945 E(VDW )=66115.001 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.29763 -1.93131 -14.39280 velocity [A/ps] : -0.18292 -0.17722 0.12800 ang. mom. [amu A/ps] : -39808.15132 42214.34712 -35262.77563 kin. ener. [Kcal/mol] : 2.68574 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 146259 intra-atom interactions NBONDS: found 146943 intra-atom interactions NBONDS: found 146879 intra-atom interactions NBONDS: found 146880 intra-atom interactions NBONDS: found 146947 intra-atom interactions NBONDS: found 146977 intra-atom interactions --------------- cycle= 25 ------ stepsize= 0.0000 ----------------------- | Etotal =36890.788 grad(E)=37.883 E(BOND)=1273.276 E(ANGL)=10044.759 | | E(IMPR)=25566.747 E(VDW )=6.007 | ------------------------------------------------------------------------------- NBONDS: found 146934 intra-atom interactions NBONDS: found 146969 intra-atom interactions NBONDS: found 147026 intra-atom interactions NBONDS: found 147020 intra-atom interactions --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =19786.128 grad(E)=49.302 E(BOND)=760.533 E(ANGL)=9252.562 | | E(IMPR)=9749.531 E(VDW )=23.502 | ------------------------------------------------------------------------------- NBONDS: found 146964 intra-atom interactions NBONDS: found 146930 intra-atom interactions NBONDS: found 146935 intra-atom interactions NBONDS: found 146981 intra-atom interactions NBONDS: found 147023 intra-atom interactions --------------- cycle= 75 ------ stepsize= 0.0004 ----------------------- | Etotal =2139.862 grad(E)=25.725 E(BOND)=121.473 E(ANGL)=1944.333 | | E(IMPR)=74.045 E(VDW )=0.011 | ------------------------------------------------------------------------------- NBONDS: found 146953 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0006 ----------------------- | Etotal =37.187 grad(E)=2.223 E(BOND)=0.049 E(ANGL)=35.940 | | E(IMPR)=1.193 E(VDW )=0.004 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1311.319 E(kin)=1274.131 temperature=309.073 | | Etotal =37.187 grad(E)=2.223 E(BOND)=0.049 E(ANGL)=35.940 | | E(IMPR)=1.193 E(VDW )=0.004 | ------------------------------------------------------------------------------- NBONDS: found 146953 intra-atom interactions NBONDS: found 146876 intra-atom interactions NBONDS: found 146780 intra-atom interactions NBONDS: found 146808 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2208.492 E(kin)=1388.591 temperature=336.838 | | Etotal =819.901 grad(E)=28.360 E(BOND)=176.461 E(ANGL)=523.105 | | E(IMPR)=118.614 E(VDW )=1.721 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.29467 -1.93482 -14.39953 velocity [A/ps] : 0.00626 0.02791 0.03460 ang. mom. [amu A/ps] : 265.95890 29542.97873 -68754.71260 kin. ener. [Kcal/mol] : 0.06662 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 146782 intra-atom interactions NBONDS: found 146853 intra-atom interactions --------------- cycle= 50 ------ stepsize= -0.0003 ----------------------- | Etotal =157.940 grad(E)=2.880 E(BOND)=1.040 E(ANGL)=38.143 | | E(DIHE)=66.413 E(IMPR)=1.610 E(VDW )=50.736 | ------------------------------------------------------------------------------- NBONDS: found 146837 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0004 ----------------------- | Etotal =107.445 grad(E)=2.647 E(BOND)=0.750 E(ANGL)=37.160 | | E(DIHE)=28.811 E(IMPR)=1.586 E(VDW )=39.137 | ------------------------------------------------------------------------------- NBONDS: found 146836 intra-atom interactions --------------- cycle= 150 ------ stepsize= 0.0001 ----------------------- | Etotal =95.030 grad(E)=2.624 E(BOND)=0.781 E(ANGL)=36.949 | | E(DIHE)=18.522 E(IMPR)=1.570 E(VDW )=37.209 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0011 ----------------------- | Etotal =85.166 grad(E)=2.610 E(BOND)=0.693 E(ANGL)=36.892 | | E(DIHE)=9.144 E(IMPR)=1.696 E(VDW )=36.740 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0010 ----------------------- | Etotal =82.629 grad(E)=2.586 E(BOND)=0.696 E(ANGL)=36.857 | | E(DIHE)=6.683 E(IMPR)=1.529 E(VDW )=36.864 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0009 ----------------------- | Etotal =82.372 grad(E)=2.578 E(BOND)=0.689 E(ANGL)=36.831 | | E(DIHE)=6.603 E(IMPR)=1.485 E(VDW )=36.764 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0012 ----------------------- | Etotal =82.348 grad(E)=2.579 E(BOND)=0.688 E(ANGL)=36.833 | | E(DIHE)=6.566 E(IMPR)=1.485 E(VDW )=36.777 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0012 ----------------------- | Etotal =82.345 grad(E)=2.579 E(BOND)=0.688 E(ANGL)=36.834 | | E(DIHE)=6.563 E(IMPR)=1.484 E(VDW )=36.776 | ------------------------------------------------------------------------------- --------------- cycle= 450 ------ stepsize= 0.0010 ----------------------- | Etotal =82.345 grad(E)=2.579 E(BOND)=0.688 E(ANGL)=36.834 | | E(DIHE)=6.562 E(IMPR)=1.484 E(VDW )=36.776 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1348.851 E(kin)=1266.506 temperature=307.223 | | Etotal =82.345 grad(E)=2.579 E(BOND)=0.688 E(ANGL)=36.834 | | E(DIHE)=6.563 E(IMPR)=1.484 E(VDW )=36.775 | ------------------------------------------------------------------------------- NBONDS: found 146830 intra-atom interactions NBONDS: found 146896 intra-atom interactions NBONDS: found 146926 intra-atom interactions NBONDS: found 146923 intra-atom interactions NBONDS: found 146853 intra-atom interactions NBONDS: found 146858 intra-atom interactions NBONDS: found 146842 intra-atom interactions NBONDS: found 146890 intra-atom interactions NBONDS: found 146896 intra-atom interactions NBONDS: found 146933 intra-atom interactions NBONDS: found 146881 intra-atom interactions NBONDS: found 146934 intra-atom interactions NBONDS: found 146928 intra-atom interactions NBONDS: found 146905 intra-atom interactions NBONDS: found 146910 intra-atom interactions NBONDS: found 146837 intra-atom interactions NBONDS: found 146834 intra-atom interactions NBONDS: found 146844 intra-atom interactions NBONDS: found 146886 intra-atom interactions NBONDS: found 146884 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2518.225 E(kin)=1397.525 temperature=339.005 | | Etotal =1120.700 grad(E)=32.015 E(BOND)=198.725 E(ANGL)=711.751 | | E(DIHE)=57.614 E(IMPR)=92.784 E(VDW )=59.827 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 48.49167 -2.31677 -13.17272 velocity [A/ps] : 0.42436 0.18078 0.00611 ang. mom. [amu A/ps] : -1221.90587 -13780.20315 -3980.63019 kin. ener. [Kcal/mol] : 0.36214 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 4149 --------------- cycle= 50 ------ stepsize= 0.0002 ----------------------- | Etotal =112.313 grad(E)=2.824 E(BOND)=0.805 E(ANGL)=38.038 | | E(DIHE)=30.399 E(IMPR)=1.924 E(VDW )=41.148 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= 0.0012 ----------------------- | Etotal =87.084 grad(E)=2.611 E(BOND)=0.692 E(ANGL)=36.979 | | E(DIHE)=10.836 E(IMPR)=1.495 E(VDW )=37.082 | ------------------------------------------------------------------------------- NBONDS: found 146859 intra-atom interactions --------------- cycle= 150 ------ stepsize= 0.0008 ----------------------- | Etotal =83.028 grad(E)=2.594 E(BOND)=0.703 E(ANGL)=36.889 | | E(DIHE)=6.852 E(IMPR)=1.503 E(VDW )=37.081 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0013 ----------------------- | Etotal =82.445 grad(E)=2.582 E(BOND)=0.689 E(ANGL)=36.846 | | E(DIHE)=6.591 E(IMPR)=1.487 E(VDW )=36.831 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0002 ----------------------- | Etotal =82.388 grad(E)=2.580 E(BOND)=0.689 E(ANGL)=36.838 | | E(DIHE)=6.534 E(IMPR)=1.484 E(VDW )=36.841 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0008 ----------------------- | Etotal =82.361 grad(E)=2.580 E(BOND)=0.688 E(ANGL)=36.840 | | E(DIHE)=6.568 E(IMPR)=1.485 E(VDW )=36.780 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0011 ----------------------- | Etotal =82.346 grad(E)=2.578 E(BOND)=0.688 E(ANGL)=36.834 | | E(DIHE)=6.565 E(IMPR)=1.484 E(VDW )=36.774 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0011 ----------------------- | Etotal =82.345 grad(E)=2.579 E(BOND)=0.688 E(ANGL)=36.834 | | E(DIHE)=6.564 E(IMPR)=1.484 E(VDW )=36.775 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. Number of violations greater 0.020: 0 RMS deviation= 0.001 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. Number of violations greater 5.000: 0 RMS deviation= 0.276 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 2794 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 1411 atoms have been selected out of 2794 SHOW: average of selected elements = 38.620957 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_5_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1619724 current use = 0 bytes HEAP: maximum overhead = 896 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1619724 bytes Maximum dynamic memory overhead: 896 bytes Program started at: 22:37:22 on 19-Jan-06 Program stopped at: 22:38:05 on 19-Jan-06 CPU time used: 43.3500 seconds ============================================================